Lý thuyết Bài tập

Tóm tắt bài

Đề bài

a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số  \(f(x) = {1 \over 2}{x^4} - 3{x^2} + {3 \over 2.}\)

b) Viết phương trình tiếp tuyến của đồ  thị \((C)\) tại điểm có hoành độ là nghiệm của phương trình \(f’’(x) = 0.\)

c) Biện luận theo tham số \(m\) số nghiệm của phương trình: \(x^4- 6x^2+ 3 = m.\)

Hướng dẫn giải

a) Khảo sát và vẽ đồ thị hàm số qua các bước đã học.

b) Giải phương trình \(f''(x)=0\) để tìm \(x_0.\) Sau đó viết phương trình tiếp tuyến của đồ thị hàm số \((C)\) theo công thức: \(y=y'(x_0)(x-x_0)+y(x_0).\)

c) Đưa phương trình về dạng: \({1 \over 2}{x^4} - 3{x^2} + {3 \over 2} = \frac{m}{2}. \) Sau đó dựa vào đồ thị ở câu a) để biện luận số nghiệm của phương trình.

Lời giải chi tiết

a) Xét hàm số y = \(f(x) = {1 \over 2}{x^4} - 3{x^2} + {3 \over 2}\)  \((C)\)

Tập xác định: \(D =\mathbb R\)

* Sự biến thiên:

Ta có: \(y’ = 2x^3- 6x  = 2x(x^2– 3)\)

\( \Rightarrow y’ = 0  \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 3 \end{array} \right..\)

- Hàm số nghịch biến trên khoảng \((-\infty;-\sqrt3)\) và \((0;\sqrt3)\), đồng biến trên khoảng \((-\sqrt 3;0)\) và \((\sqrt3;+\infty)\).

- Cực trị:

    Hàm số đạt cực đại tại \(x=0\); \(y_{CĐ}={3\over 2}\)

    Hàm số đạt cực tiểu tại hai điểm \(x=-\sqrt3\) và \(x=\sqrt3\); \(y_{CT}=y_(\pm\sqrt3)=-3\)

- Giới hạn:

   \(\mathop {\lim y}\limits_{x \to  \pm \infty }  =  + \infty \)

- Bảng biến thiên:

* Đồ thị:

Hàm số đã cho là hàm số chẵn nhận trục \(Oy\) làm trục đối xứng.

b) Ta có: \(y’’ = 6x^2– 6\)

\( \Rightarrow y’’ = 0 ⇔ 6x^2– 6 = 0 ⇔ x^2 -1 =0 ⇔ x = ± 1.\)

Có \(y’(-1) = 4; \, \,  y’(1) = -4; \, \,  y(± 1) = -1\)

Tiếp tuyến của \((C)\) tại điểm \((-1, -1)\) là : \(y = 4(x+1) – 1= 4x+3.\)

Tiếp tuyến của \((C)\) tại điểm \((1, -1)\) là: \(y = -4(x-1) – 1 = -4x + 3.\)

c) Ta có: \({x^4} - 6{x^2} + 3 = m \Leftrightarrow {1 \over 2}{x^4} - 3{x^2} + {3 \over 2} = {m \over 2}\) (1)

Số nghiệm của (1) là số giao điểm của \((C)\) và đường thẳng (d) : \(y = {m \over 2}\)

Từ đồ thị ta thấy:

\(\frac{m}{2}

\(\frac{m}{2}=-3 \Leftrightarrow m = -6\) : (1) có 2 nghiệm.

\(-3 < \frac{m}{2}<\frac{3}{2} \Leftrightarrow-6 < m < 3\): (1) có 4 nghiệm.

\(\frac{m}{2} = \frac{3}{2} \Leftrightarrow m = 3\): ( 1) có 3 nghiệm.

\(\frac{m}{2}> \frac{3}{2} \Leftrightarrow m > 3\): (1) có 2 nghiệm.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK