Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:
\(y = - {x^3} + 2{x^2} - x - 7\)
\(y = {{x - 5} \over {1 - x}}\)
Cho hàm số \(y=f(x)\) có đạo hàm trên khoảng \((a; \, b).\)
a) Nếu \(f'(x)> 0\) với mọi \(a \in(a; \, b).=\) thì hàm số \(f(x)\) đồng biến trên khoảng đó.
b) Nếu \(f'(x)< 0\) với mọi \(a \in(a; \, b).=\) thì hàm số \(f(x)\) nghịch biến trên khoảng đó.
Lời giải chi tiết
*Xét hàm số: \(y = - {x^3} +2{x^2} - x - 7\)
Tập xác định: \(D =\mathbb R\)
Ta có: \(y' = - 3{x^2} + 4x - 1 \Rightarrow y' = 0\)
\(\begin{array}{l}
\Leftrightarrow - 3{x^2} + 4x - 1 = 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x - 1 = 0\\
x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{1}{3}\\
x = 1
\end{array} \right..
\end{array}\)
Hàm số đồng biến \( \Leftrightarrow y' > 0 \Leftrightarrow - 3{x^2} + 4x - 1 > 0\)
\(\begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 < 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) < 0\\
\Leftrightarrow \frac{1}{3} < x < 1.
\end{array}\)
Hàm số đồng biến \( \Leftrightarrow y' < 0 \Leftrightarrow - 3{x^2} + 4x - 1 < 0\)
\(\begin{array}{l}
\Leftrightarrow 3{x^2} - 4x + 1 > 0 \Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < \frac{1}{3}
\end{array} \right..
\end{array}\)
Vậy hàm số đồng biến trong \(({1 \over 3},1)\) và nghịch biến trong \(( - \infty ,{1 \over 3}) \) và \( (1, + \infty ).\)
b) Xét hàm số: \(y = {{x - 5} \over {1 - x}} = \frac{x-5}{-x+1}\)
Tập xác định: \(D = \mathbb R \backslash {\rm{\{ }}1\} \)
Ta có: \(y' = \frac{1.1-5.1}{(1-x)^2}= {{ - 4} \over {{{(1 - x)}^2}}} < 0,\forall x \in D\)
Vậy hàm số nghịch biến trong từng khoảng \((-∞,1)\) và \((1, +∞)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK