Chứng minh các bất đẳng thức sau:
a) \(\tan x>x\ \ \left( 0<x<\frac{\pi }{2} \right).\)
b) \(\tan x>x+\frac{{{x}^{3}}}{3}\ \ \left( 0<x<\frac{\pi }{2} \right).\)
+) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số \(y\left( x \right)\) với 0.
+) Tính đạo hàm bậc nhất của hàm số \(y\left( x \right)\) và khảo sát hàm số \(y\left( x \right)\) trên các khoảng đề bài đã cho.
+) Dựa vào tính đơn điệu của hàm số để kết luận bài toán.
Lời giải chi tiết
a) \(\tan x>x\ \ \left( 0<x<\frac{\pi }{2} \right).\)
Xét hàm số: \(y=f\left( x \right)=\tan x-x\) với \(x\in \left( 0;\ \frac{\pi }{2} \right).\)
Ta có: \(y'=\frac{1}{{{\cos }^{2}}x}-1=\frac{1-{{\cos }^{2}}x}{{{\cos }^{2}}x}=\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}={{\tan }^{2}}x>0\forall x\in \left( 0;\frac{\pi }{2} \right)\)
Vậy hàm số luôn đồng biến trên \(\left( 0;\frac{\pi }{2} \right).\)
\(\Rightarrow \forall \ x\in \left( 0;\frac{\pi }{2} \right) \text{ta có} \, f\left( x \right)>f\left( 0 \right) \\ \Leftrightarrow \tan x-x>\tan 0-0 \\ \Leftrightarrow \tan x-x>0 \\ \Leftrightarrow \tan x>x\ \ \left( dpcm \right).\)
b) \(\tan x>x+\frac{{{x}^{3}}}{3}\ \ \left( 0<x<\frac{\pi }{2} \right).\)
Xét hàm số: \(y=g\left( x \right)=\tan x-x-\frac{{{x}^{3}}}{3}\) với \(x\in \left( 0;\ \frac{\pi }{2} \right).\)
Ta có: \(y'=\frac{1}{{{\cos }^{2}}x}-1-{{x}^{2}}=1+{{\tan }^{2}}x-1-{{x}^{2}}\\ ={{\tan }^{2}}x-{{x}^{2}}=\left( \tan x-x \right)\left( \tan x+x \right).\)
Với \(\forall \ x\in \left( 0;\frac{\pi }{2} \right)\Rightarrow \tan x>0\) nên ta có: \(\tan x+x>0\) và \(\tan x-x>0\) (theo câu a) \(\Rightarrow y'>0\,\,\forall x\in \left( 0;\frac{\pi }{2} \right)\)
Vậy hàm số \(y=g\left( x \right)\) đồng biến trên \(\left( 0;\frac{\pi }{2} \right)\Rightarrow g\left( x \right)>g\left( 0 \right).\)
\(\Leftrightarrow \tan x-x-\frac{{{x}^{3}}}{3}>\tan 0-0-0 \\ \Leftrightarrow \tan x-x-\frac{{{x}^{3}}}{3}>0 \\ \Leftrightarrow \tan x>x+\frac{{{x}^{3}}}{3}\ \ \ \left( dpcm \right).\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK