Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng hàm số \(y=\frac{x}{{{x}^{2}}+1}\) đồng biến trên khoảng \(\left( -1;\ 1 \right)\) và nghịch biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( 1;+\infty  \right).\)

Hướng dẫn giải

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

+) Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Lời giải chi tiết

Tập xác định: \(D=R.\)

Có: \(y'=\frac{{{x}^{2}}+1-2{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}=\frac{1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)}\Rightarrow y'=0\Leftrightarrow 1-{{x}^{2}}=0\Leftrightarrow \left[ \begin{align}& x=1 \\ & x=-1 \\ \end{align} \right..\)

Bảng biến thiên:

 

Vậy hàm số đồng biến trên khoảng \(\left( -1;\ 1 \right).\)

Hàm số nghịch biến trên khoảng \(\left( -\infty ;\ -1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: cách tính giới hạn của hàm số để điền vào BBT: \(\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=0.\)


Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK