Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 8. Hàm số liên tục Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng :

a. Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)

b. Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1 ; 1) ;

c. Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2 ; 2];

d. Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Hướng dẫn giải

a. Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) xác định trên \(\mathbb R\). Với mọi \(x_0\in\mathbb R\) ta có:

\(\mathop {\lim }\limits_{x \to {x_0}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^4} - {x^2} + 2} \right) = x_0^4 - x_0^2 + 2 = f\left( {{x_0}} \right)\)

Vậy f liên tục tại x0 nên f liên tục trên \(\mathbb R\).

b. Hàm số f xác định khi và chỉ khi :

\(1 - {x^2} > 0 \Leftrightarrow - 1 < x < 1\)

Vậy hàm số f xác định trên khoảng (-1 ; 1)

Với mọi x0ϵ (-1 ; 1), ta có :  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt {1 - {x^2}} }} = {1 \over {\sqrt {1 - x_0^2} }} = f\left( {{x_0}} \right)\)

Vậy hàm số f liên tục tại điểm x0. Do đó f liên tục trên khoảng  (-1 ; 1)

c. Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) xác định trên đoạn [-2 ; 2]

Với mọi \({x_0} \in \left( { - 2;2} \right)\) , ta có:  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \sqrt {8 - 2x_0^2} = f\left( {{x_0}} \right)\)

Vậy hàm số f liên tục trên khoảng (-2 ; 2). Ngoài ra, ta có :

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = \sqrt {8 - 2{{\left( { - 2} \right)}^2}} = 0 = f\left( { - 2} \right)\)

và \(\mathop {\lim }\limits_{x \to {{\left( { 2} \right)}^ - }} = \sqrt {8 - {{2.2}^2}} = 0 = f\left( 2 \right)\)

Do đó hàm số f liên tục trên đoạn [-2 ; 2]

d. Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) xác định trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Với \({x_0} \in \left( {{1 \over 2}; + \infty } \right)\) ta có  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2x - 1} = \sqrt {2{x_0} - 1} = f\left( {{x_0}} \right)\)

Nên hàm số liên tục trên khoảng  \(\left( {{1 \over 2}; + \infty } \right)\)

Mặt khác ta có  \(\mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} \sqrt {2x - 1} = 0 = f\left( {{1 \over 2}} \right)\)

Do đó hàm số f liên tục trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK