Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 50. Cho dãy số (un) xác định bởi :

\({u_1} = 3\;\text{và}\;{u_{n + 1}} = \sqrt {{u_n} + 6} \) với mọi n ≥ 1

Chứng minh rằng (un) vừa là cấp số cộng, vừa là cấp số nhân.

Hướng dẫn giải

Ta chứng minh \({u_n} = {\rm{ }}3{\rm{ }}\;\left( 1 \right)\) với mọi n bằng qui nạp

+) Với \(n = 1\) ta có \({u_1} = {\rm{ }}3\), (1) đúng

+) Giả sử (1) đúng với \(n=k\) tức là: \({u_k} = {\rm{ }}3\) 

+) Ta chứng minh \({u_{k{\rm{ }} + {\rm{ }}1}} = {\rm{ }}3\)

Thật vậy ta có  \({u_{k + 1}} = \sqrt {{u_k} + 6} = \sqrt {3 + 6} = 3\)

Vậy \({u_n} = {\rm{ }}3, ∀n ≥ 1\) do đó (un) vừa là cấp số cộng công sai \(d = 0\) vừa là cấp số nhân công bội \(q = 1\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK