Bài 68. Một nhóm có 7 người trong đó gồm 4 nam và 3 nữ. Chọn ngẫu nhiên 3 người. Gọi X là số nữ trong 3 người được chọn.
a. Lập bảng phân bố xác suất của X.
b. Tính \(E(X)\) và \(V(X)\) (tính chính xác đến hàng phần trăm).
a. Số trường hợp có thể là \(C_7^3 = 35\)
Xác suất để không có người nữ nào được chọn là : \(P\left( {X = 0} \right) = {{C_4^3} \over {C_7^3}} = {4 \over {35}}\)
Xác suất để có 1 nữ được chọn là \(P\left( {X = 1} \right) = {{C_3^1C_4^2} \over {C_7^3}} = {{18} \over {35}}\)
Xác suất để có 2 nữ được chọn là \(P\left( {X = 2} \right) = {{C_3^2C_4^1} \over {C_7^3}} = {{12} \over {35}}\)
Xác suất để có 3 nữ được chọn là \(P\left( {X = 3} \right) = {{C_3^3} \over {C_7^3}} = {1 \over {35}}\)
Bảng phân bố xác suất của X như sau :
X
0
1
2
3
P
\({4 \over {35}}\)
\({18 \over {35}}\)
\({12 \over {35}}\)
\({1 \over {35}}\)
X
0
1
2
3
P
\({4 \over {35}}\)
\({18 \over {35}}\)
\({12 \over {35}}\)
\({1 \over {35}}\)
b. Ta có:
\(\eqalign{
& E\left( X \right) = 0.{4 \over {35}} + 1.{{18} \over {35}} + 2.{{12} \over {35}} + 3.{1 \over {35}} = {9 \over 7} \approx 1,29 \cr
& V\left( X \right) = {\left( {0 - {9 \over 7}} \right)^2}.{4 \over {35}} + {\left( {1 - {9 \over 7}} \right)^2}.{{18} \over {35}} + {\left( {2 - {9 \over 7}} \right)^2}.{{12} \over {35}} + {\left( {3 - {9 \over 7}} \right)^2}.{1 \over {35}} \cr
& \;\;\;\;\;\;\;\;\; \approx 0,49 \cr} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK