Câu 65 trang 94 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 65. Có 3 hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để :

a. Tổng các số ghi trên ba tấm thẻ rút ra không nhỏ hơn 4

b. Tổng các số ghi trên ba tấm thẻ rút ra bằng 6.

Hướng dẫn giải

Không gian mẫu \(Ω = \{x; y; z\} | 1≤ x ≤ 5, 1 ≤ y ≤ 5, 1 ≤ z ≤ 5\text{ và } x, y, z \in\mathbb N^*\}\), trong đó x, y và z theo thứ tự là số ghi trên thẻ rút ở hòm thứ nhất, thứ hai và thứ ba. Ta có: \(n_Ω = 5.5.5 = 125\).

a. Gọi A là biến cố đang xét. Khi đó \(\overline A \) là biến cố “Tổng số ghi trên ba tấm thẻ được chọn nhiều nhất là 3”. Khi đó  \({\Omega _{\overline A }} =\{\left( {1,1,1} \right)\}\,\text{ nên }\,n_{{\Omega _{\overline A }}}  = 1\)

Vậy  \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - {1 \over {125}} = 0,992\)

b. Gọi B là biến cố đang xét. Khi đó :

\({\Omega _B} = \left\{ {\left( {x,y,z} \right)x + y + z = 6,1 \le x \le 5,1 \le y \le 5,1 \le z \le 5\,va\,x,y,z \in N*} \right\}\)

Ta có: \(6 = 1 + 2 + 3 = 1 + 1 + 4 = 2 + 2 + 2\)

Tập \(\{1, 2, 3\}\) cho ta sáu phần tử của ΩB, tập \(\{1,1,4\}\) cho ta ba phần tử của ΩB, tập \(\{2, 2, 2\}\) chỉ cho ta duy nhất một phần tử ΩB

Vậy \(n_{\Omega _{B }}= 6 + 3 + 1 = 10\)

Do đó :  \(P\left( B \right) = {{10} \over {125}} = 0,08\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK