Bài 35. Xác suất bắn trúng hồng tâm của một người bắn cung là \(0,2\). Tính xác suất để trong ba lần bắn độc lập :
a. Người đó bắn trúng hồng tâm đúng một lần ;
b. Người đó bắn trúng hồng tâm ít nhất một lần.
a. Gọi \(A_i\) là biến cố “Người bắn cung bắn trúng hồng tâm ở lần thứ \(i\)” (\(i = 1,2,3\)), ta có \(P(A_i) = 0,2\). Gọi \(K\) là biến cố “Trong ba lần bắn có duy nhất một lần người đó bắn trúng hồng tâm”, ta có:
\(K = {A_1}\overline {{A_2}} \overline {{A_3}} \cup \overline {{A_1}} {A_2}\overline {{A_3}} \cup \overline {{A_1}} \overline {{A_2}} {A_3}\)
Theo quy tắc cộng xác suất, ta có:
\(P\left( K \right) = P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) + P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) + P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right)\)
Theo quy tắc nhân xác suất, ta tìm được :
\(P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right)P\left( {\overline {{A_3}} } \right) = 0,2.0,8.0,8 = 0,128.\)
Tương tự \(P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) = P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right) = 0,128\)
Vậy \(P(K) = 3.0,128 = 0,384\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK