Nêu định nghĩa hàm số liên tục tại một điểm, trên một khoảng. Nêu hình ảnh hình học của một hàm số liên tục trên một khoảng.
Định nghĩa 1:
+ Hàm số \(f(x)\) xác định trên khoảng \(k\) được gọi là liên tục tại \(x_0∈ k\) nếu: \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)
+ Hàm số không liên tục tại điểm \(x_0\) thì được gọi là gián đoạn tại điểm đó.
Định nghĩa 2:
a) Hàm số \(f(x)\) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm trên khoảng đó.
b) Hàm số \(f(x)\) được gọi là liên tục trên \([a, b]\) nếu nó liên tục trên khoảng \((a, b)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a);\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)\)
Nhận xét:
Đồ thị của hàm liên tục trên một khoảng là một đường liền trên khoảng đó (hình dưới)
Hình dưới đây cho ví dụ về đồ thị của một hàm số không liên tục trên khoảng \((a, b)\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK