Hãy cho biết dãy số \((u_n)\) nào dưới đây là dãy số tăng, nếu biết công thức số hạng tổng quát \(u_n\) của nó là:
A. \({( - 1)^{n + 1}}.\sin {\pi \over n}\) B. \({( - 1)^{2n}}({5^n} + 1)\)
C. \({1 \over {\sqrt {n + 1} + n}}\) D. \({n \over {{n^2} + 1}}\)
Dãy số \((u_n)\) là dãy số tăng nếu ta có \(u_{n+1} > u_n\) với mọi \(n \in N^*\)
Lời giải chi tiết
Xét từng phương án ta có:
_ Phương án A không được vì dãy số có chứa nhân tử \({\left( { - 1} \right)^{n + 1}}\) nên các số hạng sẽ đan dấu, do đó, \(u_n\) không thể là dãy số tăng.
_ Phương án C:
\(\eqalign{
& {u_3} = {1 \over {\sqrt {3 + 1} + 1}} = {1 \over 3} \cr
& {u_8} = {1 \over {\sqrt {8 + 1} + 1}} = {1 \over 4} \cr} \)
\(⇒ u_8 < u_3 ⇒ u_n\) không là dãy số tăng \(⇒\) loại đáp án C
_ Phương án D: \({u_1} = {1 \over 2},{u_2} = {2 \over 5}\)
\(⇒ u_2< u_1⇒ u_n\) không là dãy số tăng \(⇒\) loại phương án D
Chọn đáp án B.
Thật vậy:
\({u_n} = {\rm{ }}{\left( { - 1} \right)^{2n}}.({5^n} + {\rm{ }}1){\rm{ }} = {\rm{ }}{5^n} + 1\)
(vì \(2n\) chẵn nên \({\left( { - 1} \right)^{2n}} = {\rm{ }}1\))
Ta có:
\({u_{n + 1}} - {u_n} =({5^{n + 1}} + 1)-({5^n} +1) = {5^{n + 1}}-{5^n}\)
\(= 5^n. (5 – 1) = 4. 5^n> 0, ∀ n ∈ {\mathbb N}^*\)
Suy ra: \(u_n\) là dãy số tăng.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK