Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế xếp thành hai dãy đối diện nhau. Tính xác suất sao cho:
a) Nam, nữ ngồi đối diện nhau;
b) Nữ ngồi đối diện nhau.
a) +) Mỗi cách xếp \(4\) bạn vào \(4\) chỗ ngồi là một hoán vị của \(4\) phần tử. Tính số phần tử của không gian mẫu.
+) Gọi A là biến cố: "Nam, nữ ngồi đối diện nha" \( \Rightarrow \overline A \) là biến cố: "Nam đối diện nam, nữ đối diện nữ".
Tính xác suất của biến cố \( \Rightarrow \overline A \) và sử dụng công thức \(P\left( A \right) + P\left( {\overline A } \right) = 1\).
b) Vì chỉ có \(4\) người: \(2\) nam và \(2\) nữ nên nếu \(2\) nữ ngồi đối diện nhau thì \(2\) nam cũng ngồi đối diện nhau chính là biến cố \(\overline A \) ở câu a).
Lời giải chi tiết
Mỗi cách xếp \(4\) bạn vào \(4\) chỗ ngồi là một hoán vị của \(4\) phần tử, vì vậy không gian mẫu có \(4! = 24\) phần tử.
a) Gọi A là biến cố: "Nam, nữ ngồi đối diện nha" \( \Rightarrow \overline A \) là biến cố: "Nam đối diện nam, nữ đối diện nữ".
Trong các cách xếp chỗ như vậy thì \(2\) nữ phải ngồi đối diện nhau, \(2\) nam cũng ngồi đối diện nhau.
+) Có \(4\) chỗ để cho bạn nữ thứ nhất chọn.
+) Với mỗi cách chọn chỗ của bạn nữ thứ nhất chỉ có duy nhất một chỗ (đối diện) cho bạn nữ thứ hai chọn.
+) Sau khi bai bạn nữ đã chọn chỗ ngồi (đối diện nhau) thì còn lại \(2\) chỗ (đối diện nhau) để xếp cho \(2\) bạn nam và có \(2!\) cách xếp chỗ cho \(2\) bạn này.
Vi vậy theo quy tắc nhân, tất cả có \(4 . 1 .2! = 8\) cách xếp chỗ cho nam nữ không ngồi đối diện nhau.
Do đó có \(8\) kết quả không thuận lợi cho biến cố \(A\): "Nam, nữ ngồi đối diện nhau".
Vậy xác suất xảy ra biến cố đối của \(A\) là \(P\)(\(\overline{A}\)) = \(\frac{8}{24}\) = \(\frac{1}{3}\).
\( \Rightarrow P(A) = 1 - P\)(\(\overline{A}\)) = \(\frac{2}{3}\).
b) Vì chỉ có \(4\) người: \(2\) nam và \(2\) nữ nên nếu \(2\) nữ ngồi đối diện nhau thì \(2\) nam cũng ngồi đối diện nhau. Do đó biến cố này chính là biến cố \(\overline{A}\): "Nữ ngồi đối diện nhau".
Xác suất xảy ra biến cố này là \(P\)(\(\overline{A}\)) = \(\frac{1}{3}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK