Nghiệm dương nhỏ nhất của phương trình \(sin x + sin2x = cosx + 2 cox^2 x\) là:
A. \({\pi \over 6}\) B. \({{2\pi } \over 3}\) C. \({\pi \over 4}\) D. \({\pi \over 3}\)
Đưa phương trình về dạng tích, sau đó giải các phương trình lượng giác cơ bản, sử dụng công thức nhân đôi \(\sin 2x = 2\sin x\cos x\).
Sau khi tìm được các họ nghiệm, đối với mỗi họ nghiệm ta tìm nghiệm dương nhỏ nhất và chọn đáp án đúng.
Lời giải chi tiết
Ta có:
\(sinx + sin2x = cosx + 2cos^2x \)
\(⇔ sinx + 2sinxcosx = cosx + 2cos^2x\)
\(⇔ sinx(1 + 2cosx) = cos (1 + 2cosx) \)
\(⇔ (1 + 2cosx)(sinx – cosx) = 0\)
\( \Leftrightarrow \left[ \matrix{
1 + 2\cos x = 0 \hfill \cr
\sin x - \cos x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\cos x = - {1 \over 2} \hfill \cr
\tan x = 1 \hfill \cr} \right. \)
\(\Leftrightarrow \left[ \matrix{
x = \pm {{2\pi } \over 3} + k2\pi \hfill \cr
x = {\pi \over 4} + k\pi \hfill \cr} \right.(k \in \mathbb{Z})\)
Nghiệm dương nhỏ nhất của họ nghiệm : \(x = {{2\pi } \over 3} + k2\pi \Rightarrow x = {{2\pi } \over 3}\)
Nghiệm dương nhỏ nhất của họ nghiệm: \(x = - {{2\pi } \over 3} + k2\pi \Rightarrow x = - {{2\pi } \over 3} + 2\pi = {{4\pi } \over 3}\)
Nghiệm dương nhỏ nhất của họ nghiệm: \(x = {\pi \over 4} + k\pi \Rightarrow x = {\pi \over 4}\)
Suy ra nghiệm dương nhỏ nhất của phương trình đã cho là \(x = {\pi \over 4}\)
Chọn đáp án C.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK