Phương trình \({{\cos 4x} \over {\cos 2x}} = \tan 2x\) có số nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\) là:
A. \(2\) B. \( 3\) C. \(4\) D. \(5\)
+) Sử dụng công thức \(\tan 2x = \frac{{\sin 2x}}{{\cos 2x}}\), quy đồng, bỏ mẫu.
+) Sử dụng công thức nhân đôi: \(\cos 4x = 1 - 2{\sin ^2}2x\)
+) Giải phương trình bậc hai của \(\sin 2x\).
+) Giải phương trình lượng giác cơ bản của hàm sin.
Lời giải chi tiết
Điều kiện: \(cos2x ≠ 0 ⇔ sin2x ≠ ± 1\)
Ta có:
\({{\cos 4x} \over {\cos 2x}} = {{\sin 2x} \over {\cos 2x}} \Rightarrow \cos 4x = \sin 2x\)
\(\Leftrightarrow 1 - 2si{n^2}2x = \sin 2x\)
\( \Leftrightarrow 2{\sin ^2}2x + \sin 2x - 1 = 0\)
\( \Leftrightarrow \left[ \matrix{
\sin 2x = - 1 \hfill\text{(loại)} \cr
\sin 2x = {1 \over 2} \hfill \cr} \right.\)
Ta có:
\(\eqalign{
& \sin 2x = {1 \over 2} = \sin {\pi \over 6} \cr
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 6} + k2\pi \hfill \cr
2x = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over {12}} + k\pi \hfill \cr
x = {{5\pi } \over {12}} + l\pi \hfill \cr} \right.k,l \in \mathbb{Z}\cr} \)
Ta lại có:
\(x \in (0,{\pi \over 2})\)
\(x = {\pi \over {12}} + k\pi :0 < {\pi \over {12}} + k\pi < {\pi \over 2}\)
\(\Leftrightarrow 0 < {1 \over {12}} + k < {1 \over 2}\)
\(\Leftrightarrow {{ - 1} \over {12}} < k < {5 \over {12}}(k \in \mathbb{Z}) \Rightarrow k = 0\)
\(x = {{5\pi } \over {12}} + l\pi :0 < {{5\pi } \over {12}} + l\pi < {\pi \over 2}\)
\(\Leftrightarrow 0 < {5 \over {12}} + l < {1 \over 2} \)
\(\Leftrightarrow {{ - 5} \over {12}} < l < {1 \over {12}}(l \in \mathbb{Z}) \Rightarrow l = 0\)
Vậy phương trình có đúng \(2\) nghiệm thuộc khoảng \((0,{\pi \over 2})\)
Chọn đáp án A.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK