Bài 7 trang 41 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Phương trình \({{\cos 4x} \over {\cos 2x}} = \tan 2x\) có số nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\) là:

A. \(2\)                  B. \( 3\)                            C. \(4\)                   D. \(5\)

Hướng dẫn giải

+) Sử dụng công thức \(\tan 2x = \frac{{\sin 2x}}{{\cos 2x}}\), quy đồng, bỏ mẫu.

+) Sử dụng công thức nhân đôi: \(\cos 4x = 1 - 2{\sin ^2}2x\)

+) Giải phương trình bậc hai của \(\sin 2x\).

+) Giải phương trình lượng giác cơ bản của hàm sin.

Lời giải chi tiết

Điều kiện: \(cos2x ≠ 0 ⇔ sin2x ≠  ± 1\)

Ta có: 

\({{\cos 4x} \over {\cos 2x}} = {{\sin 2x} \over {\cos 2x}} \Rightarrow \cos 4x = \sin 2x\)

\(\Leftrightarrow 1 - 2si{n^2}2x = \sin 2x\)

\( \Leftrightarrow 2{\sin ^2}2x + \sin 2x - 1 = 0\)

\( \Leftrightarrow \left[ \matrix{
\sin 2x = - 1 \hfill\text{(loại)} \cr
\sin 2x = {1 \over 2} \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& \sin 2x = {1 \over 2} = \sin {\pi \over 6} \cr
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 6} + k2\pi \hfill \cr
2x = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over {12}} + k\pi \hfill \cr
x = {{5\pi } \over {12}} + l\pi \hfill \cr} \right.k,l \in \mathbb{Z}\cr} \)

Ta lại có:

 \(x \in (0,{\pi \over 2})\)

\(x = {\pi \over {12}} + k\pi :0 < {\pi \over {12}} + k\pi < {\pi \over 2}\)

\(\Leftrightarrow 0 < {1 \over {12}} + k < {1 \over 2}\)

\(\Leftrightarrow {{ - 1} \over {12}} < k < {5 \over {12}}(k \in \mathbb{Z}) \Rightarrow k = 0\)

\(x = {{5\pi } \over {12}} + l\pi :0 < {{5\pi } \over {12}} + l\pi < {\pi \over 2}\)

\(\Leftrightarrow 0 < {5 \over {12}} + l < {1 \over 2} \)

\(\Leftrightarrow {{ - 5} \over {12}} < l < {1 \over {12}}(l \in \mathbb{Z}) \Rightarrow l = 0\)

Vậy phương trình có đúng \(2\) nghiệm thuộc khoảng \((0,{\pi  \over 2})\) 

Chọn đáp án A.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK