Giải các phương trình sau:
a) \(2si{n^2}x{\rm{ }} + {\rm{ }}sinxcosx{\rm{ }} - {\rm{ }}3co{s^2}x{\rm{ }} = {\rm{ }}0\);
b) \(3si{n^2}x{\rm{ }} - {\rm{ }}4sinxcosx{\rm{ }} + {\rm{ }}5co{s^2}x{\rm{ }} = {\rm{ }}2\);
c) \(si{n^2}x{\rm{ }} + {\rm{ }}sin2x{\rm{ }} - {\rm{ }}2co{s^2}x{\rm{ }} = {1 \over 2}\) ;
d) \(2co{s^2}x{\rm{ }} - {\rm{ }}3\sqrt 3 sin2x{\rm{ }} - {\rm{ }}4si{n^2}x{\rm{ }} = {\rm{ }} - 4\).
Phương pháp giải phương trình đẳng cấp đối với sin và cos: \(a{\sin ^2}x + b\sin x\cos x + c{\cos ^2}x = d\)
Bước 1: Xét \(\cos x = 0\) có là nghiệm của phương trình hay không?
Bước 2: Khi \(\cos x \ne 0\).
- Chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được: \(a\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + b\frac{{\sin x}}{{\cos x}} + c = \frac{d}{{{{\cos }^2}x}}\)
- Sử dụng công thức \(\tan x = \frac{{\sin x}}{{\cos x}};\,\,\frac{1}{{{{\cos }^2}x}} = {\tan ^2}x + 1\) đưa phương trình về dạng:
\(\begin{array}{l}
\,\,\,\,\,a{\tan ^2}x + b\tan x + c = d\left( {1 + {{\tan }^2}x} \right)\\
\Leftrightarrow \left( {a - d} \right){\tan ^2}x + b\tan x + c - d = 0
\end{array}\)
- Đặt \(t=tanx\), giải phương trình bậc hai ẩn t và tìm các nghiệm t.
- Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in Z} \right)\) và đối chiếu với điều kiện.
Lời giải chi tiết
a) \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\)
Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(2.1 + 0 - 0 = 0\) (vô nghiệm)
\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\)
Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:
\(2{{{{\sin }^2}x} \over {{{\cos }^2}x}} + {{\sin x} \over {\cos x}} - 3 = 0 \Leftrightarrow 2{\tan ^2}x + \tan x - 3 = 0\)
Đặt \(t = \tan x,\) khi đó phương trình trở thành: \(2{t^2} + t - 3 = 0 \Leftrightarrow \left[ \matrix{ t = 1 \hfill \cr t = - {3 \over 2} \hfill \cr} \right.\)
Với \(t = 1 \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)
Với \(t = - {3 \over 2} \Rightarrow \tan x = - {3 \over 2}\)
\(\Leftrightarrow x = \arctan \left( { - {3 \over 2}} \right) + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)
Vậy nghiệm của phương trình là \(x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan \left( { - {3 \over 2}} \right) + k\pi \,\,\left( {k \in Z} \right)\).
b) \(3{\sin ^2}x - 4\sin x\cos x + 5{\cos ^2}x = 2\)
Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(3.1 - 0 + 0 = 2\) (vô nghiệm)
\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\)
Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:
\(\eqalign{ & \,\,\,\,\,\,3{{{{\sin }^2}x} \over {{{\cos }^2}x}} - 4{{\sin x} \over {\cos x}} + 5 = {2 \over {{{\cos }^2}x}} \cr & \Leftrightarrow 3{\tan ^2}x - 4\tan x + 5 = 2\left( {{{\tan }^2}x + 1} \right) \cr & \Leftrightarrow {\tan ^2}x - 4\tan x + 3 = 0 \cr} \)
Đặt \(t = \tan x,\) khi đó phương trình trở thành: \({t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \matrix{ t = 1 \hfill \cr t = 3 \hfill \cr} \right.\)
Với \(t = 1 \Leftrightarrow \tan x = 1 \)
\(\Leftrightarrow x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)
Với \(t = 3 \Rightarrow \tan x = 3 \)
\(\Leftrightarrow x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)
Vậy nghiệm của phương trình là \(x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).
\(\eqalign{ & c)\,\,{\sin ^2}x + \sin 2x - 2{\cos ^2}x = {1 \over 2}\cr& \Leftrightarrow {\sin ^2}x + 2\sin x\cos x - 2{\cos ^2}x = {1 \over 2} \cr & \Leftrightarrow 2{\sin ^2}x + 4\sin x\cos x - 4{\cos ^2}x = 1 \cr} \)
Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(2 + 0 - 0 = 1\) (vô nghiệm)
\( \Rightarrow \cos x \ne 0 \Rightarrow x \ne {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\)
Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:
\(\eqalign{ & \,\,\,\,\,\,2{{{{\sin }^2}x} \over {{{\cos }^2}x}} + 4{{\sin x} \over {\cos x}} - 4 = {1 \over {{{\cos }^2}x}} \cr & \Leftrightarrow 2{\tan ^2}x + 4\tan x - 4 = {\tan ^2}x + 1 \cr & \Leftrightarrow {\tan ^2}x + 4\tan x - 5 = 0 \cr} \)
Đặt \(t = \tan x,\) khi đó phương trình trở thành: \({t^2} + 4t - 5 = 0 \Leftrightarrow \left[ \matrix{ t = 1 \hfill \cr t = - 5 \hfill \cr} \right.\)
Với \(t = 1 \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\,\,\,\left( {tm} \right)\)
Với \(t = - 5 \Rightarrow \tan x = - 5\)
\(\Leftrightarrow x = \arctan \left( { - 5} \right) + k\pi \,\,\left( {k \in Z} \right)\,\,\left( {tm} \right)\)
Vậy nghiệm của phương trình là \(x = {\pi \over 4} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = \arctan \left( { - 5} \right) + k\pi \,\,\left( {k \in Z} \right)\).
\(\eqalign{ & d)\,\,2{\cos ^2}x - 3\sqrt 3 \sin 2x - 4{\sin ^2}x = - 4 \cr & \Leftrightarrow 2{\cos ^2}x - 6\sqrt 3 \sin x\cos x - 4{\sin ^2}x = - 4 \cr} \)
Khi \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\), khi đó ta có \(0 + 0 - 4 = - 4 \Rightarrow x = {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\) là nghiệm của phương trình.
Khi \(\cos x \ne 0 \Rightarrow x \ne {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\)
Chia cả hai vế của phương trình cho \({\cos ^2}x\) ta được:
\(\eqalign{ & \,\,\,\,\,\,2 - 6\sqrt 3 {{\sin x} \over {\cos x}} - 4{{{{\sin }^2}x} \over {{{\cos }^2}x}} = {{ - 4} \over {{{\cos }^2}x}} \cr & \Leftrightarrow 2 - 6\sqrt 3 \tan x - 4{\tan ^2}x = - 4{\tan ^2}x - 4 \cr & \Leftrightarrow 6\sqrt 3 \tan x = 6 \cr & \Leftrightarrow \tan x = {1 \over {\sqrt 3 }} \cr & \Leftrightarrow x = {\pi \over 6} + k\pi \,\,\left( {k \in Z} \right) \cr} \)
Vậy nghiệm của phương trình là \(x = {\pi \over 2} + k\pi \,\,\left( {k \in Z} \right)\) hoặc \(x = {\pi \over 6} + k\pi \,\,\left( {k \in Z} \right)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK