Cho tam giác \(ABC\), biết \(A(1; 4), B(3; -1)\) và \(C(6; 2).\)
a) Lập phương trình tổng quát của các đường thẳng \(AB, BC\), và \(CA.\)
b) Lập phương trình tổng quát của đường cao \(AH\) và trung tuyến \(AM.\)
+) Phương trình đường thẳng \(d\) đi qua \(A(x_A; \, y_A)\) và \(B(x_B; \, y_B)\) là: \(\frac{x-x_A}{x_B-x_A}=\frac{y-y_A}{y_B-y_A}.\)
+) Đường cao AH là đường thẳng đi qua A và vuông góc với BC hay nhận VTCP của BC là VTPT.
+) Đường trung tuyến AM là đường thẳng đi qua A và trung điểm M của BC.
Lời giải chi tiết
a) Phương trình đường thẳng \(AB: \frac{x-1}{3-1}=\frac{y-4}{-1-4}\)
\(\Leftrightarrow \frac{x-1}{2}=\frac{y-4}{-5} \Leftrightarrow 5x+2y-13=0. \)
Tương tự ta có:
phương trình đường thẳng \(BC: x - y -4 = 0\)
phương trình đường thẳng \(CA: 2x + 5y -22 = 0\)
b) Đường cao \(AH\) là đường thẳng đi qua \(A(1; 4)\) và vuông góc với \(BC\).
\(\vec{BC} = (3; 3)\) \(\Rightarrow \vec{AH} ⊥ \vec{BC}\) nên \(\vec{AH}\) nhận vectơ \(\vec{n} = (3; 3)\) làm vectơ pháp tuyến và có phương trình tổng quát:
\(AH : 3(x - 1) + 3(y -4) = 0\)
\(\Leftrightarrow 3x + 3y - 15 = 0\)
\(\Leftrightarrow x + y - 5 = 0\)
Gọi \(M\) là trung điểm \(BC\) ta có \(M (\frac{9}{2}; \frac{1}{2})\)
Trung tuyến \(AM\) là đường thẳng đi qua hai điểm \(A, M\).
\(AM:{{x - 1} \over {{9 \over 2} - 1}} = {{y - 4} \over {{1 \over 2}-4}} \Leftrightarrow x + y - 5 = 0\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK