Hãy nhắc lại định nghĩa giá trị lượng giác của một góc \(α\) với \(0^0≤ α ≤ 180^0\). Tại sao khi \(α\) là một góc nhọn thì giá trị lượng giác này lại chính là các tỉ số lượng giác đã được học ở lớp 9?
+) Định nghĩa: Với mỗi góc \(α\) \((0^0≤ α ≤ 180^0)\) ta xác định một điểm \(M\) trên nửa đường tròn đơn
vị sao cho góc \(xOM = α\) và giả sử điểm \(M\) có tọa độ \(M (x_0;y_0)\).
Khi đó ta có định nghĩa:
Sin của góc \(α\) là \(y_0\), kí hiệu là \(\sin α = y_0\)
cosin của góc \(α\) là \(x_0\), kí hiệu là \(\cos α = x_0\)
tang của góc \(α\) là \(( x_0≠ 0)\), ký hiệu \(\tan α = {{{y_0}} \over {{x_0}}}\)
cotang cuả góc \(α\) là \((y_0≠ 0)\), ký hiệu \(\cot α = {{{x_0}} \over {{y_0}}}\)
Các số \(\sin α, \cos α, \tan α, \cot α\) được gọi là các giá trị lượng giác của góc \( α\).
+) Khi \(α\) là các góc nhọn thì:
+ Theo định nghĩa ta có: \(\sin α = y_0\)
Trong tam giác \(OAM\) vuông tại \(A\), ta có: \(\sin \alpha = {{{y_0}} \over 1} = {y_0}\)
+ Theo định nghĩa ta có: \(\cos α = x_0\)
Trong tam giác \(OAM\) vuông tại \(A\), ta có: \(\cos \alpha = {{OA} \over {OM}} = {{{x_0}} \over 1} = {x_0}\)
+ Theo định nghĩa ta có: \(\tan \alpha = {{{y_0}} \over {{x_0}}}({x_0} \ne 0)\)
Trong tam giác \(OAM\) vuông tại \(A\), ta có: \(\tan \alpha = {{AM} \over {OA}} = {{{y_0}} \over {{x_0}}}\)
+ Theo định nghĩa ta có: \(\cot \alpha = {{{x_0}} \over {{y_0}}}({y_0} \ne 0)\)
Trong tam giác \(OAM\) vuông tại \(A\), ta có: \(\cot \alpha = {{OA} \over {AM}} = {{{x_0}} \over {{y_0}}}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK