Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\, \overrightarrow {{F_2}} = \overrightarrow {MB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm \(M\) và đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là \(100N\) và \(\widehat {AMB} = {60^0}.\)
Tìm cường độ và hướng của lực \(\overrightarrow {{F_3}} .\)
Với quy tắc ba điểm tùy ý \(A, \, \, B, \, \, C\) ta luôn có:
\(+ )\;\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \) (quy tắc ba điểm).
\( + )\;\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \) (quy tắc trừ).
Lời giải chi tiết
Theo đề bài cường độ của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là \(100N\) nên \(MA=MB\). Mặt khác \(\widehat {AMB} = {60^0}\) nên tam giác \(ABM\) đều.
Do đó \( MI={{AM\sqrt 3 } \over 2} = {{100\sqrt 3 } \over 2} = 50\sqrt 3 \)
\(\Rightarrow MC=2MI=2.50\sqrt 3=100\sqrt 3 \)
\(\overrightarrow {{F_3}} = \overrightarrow {MC} = \overrightarrow {MA} + \overrightarrow {MB} \)
Do đó \(\overrightarrow {{F_3}} \) có hướng là tia phân giác trong của góc \(\widehat {AMB} \) và có độ lớn là \(100\sqrt 3 N\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK