Cho hai phương trình
\(4x = 5\) và \(3x = 4\).
Nhân các vế tương ứng của hai phương trình đã cho. Hỏi
a) Phương trình nhận được có tương đương với một trong hai phương trình đã cho hay không?
b) Phương trình đó có phải là phương trình hệ quả của một trong hai phương trình đã cho hay không?
Hai phương trình được gọi là tương đương khi chúng có cùng một tập nghiệm
Phương trình hệ quả:
Nếu mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\) thì phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\) được gọi là phương trình hệ quả của phương trình f(x) = g(x) . Ta viết: \(f\left( x \right) = g\left( x \right) \Rightarrow {f_1}\left( x \right) = {g_1}\left( x \right)\)
Lời giải chi tiết
a) Nhân các vế tương ứng của hai phương trình ta được
\(12x^2= 20 ⇔ x^2= \frac{20}{12}\) = \(\frac{5}{3}\) ⇔ \(x\) = ±\(\sqrt{\frac{5}{3}}\).
Phương trình này không tương đương với phương trình nào trong các phương trình đã cho.
Vì \(4x = 5 ⇔ x = \frac{5}{4}\) ; \(\frac{5}{4}\) ≠ ±\(\sqrt{\frac{5}{3}}\)
Trong khi: \(3x = 4 ⇔ x = \frac{4}{3}\) ; \(\frac{4}{3}\) ≠ ±\(\sqrt{\frac{5}{3}}\)
b) Phương trình mới cũng không là phương trình hệ quả của một phương trình nào đã cho.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK