Một mảnh vườn hình chữ nhật có chu vi \(34m\), nếu tăng chiều dài thêm \(3m\) và tăng chiều rộng thêm \(2m\) thì diện tích tăng thêm \(45{m^2}\). Tính chiều dài và chiều rộng của mảnh vườn.
Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn (\( x, y > 0\)).
Chu vi của vườn là \(2(x + y)\; (m)\), nên ta có phương trình :
\(2(x + y) = 34\Leftrightarrow x + y = 17\)
Diện tích của vườn lúc đầu là \(xy\,\,({\rm{ }}{m^2})\); diện tích của vườn lúc sau là \(\left( {{\rm{ }}x + 3} \right)\left( {y + 2} \right)\;({m^2}).\)
Theo bài ra, ta có phương trình : \(\left( {x + 3} \right)\left( {y + 2} \right) = xy + 45\)
Vậy, ta có hệ phương trình : \(\left\{ \matrix{ x + y = 17 \hfill \cr \left( {x + 3} \right)\left( {y + 2} \right) = xy + 45 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{ x + y = 17 \hfill \cr 2x + 3y = 39 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ 2x + 2y = 34 \hfill \cr 2x + 3y = 39 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ y = 5 \hfill \cr x + y = 17 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 12 \hfill \cr y = 5 \hfill \cr} \right.\)
Vậy chiều dài, chiều rộng của mảnh vườn là \(12\; (m)\) và \(5\; (m)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK