Tìm hai số tự nhiên, biết rằng tổng của chúng bằng \(1006\) và nếu lấy số lớn chia cho số nhỏ thì được thương là \(2\) và số dư là \(124\).
+) Các bước giải bài toán bằng cách lập hệ phương trình:
B1: Chọn ẩn, đặt điều kiện thích hợp.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.
B2: Giải hệ phương trình.
B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời.
+) Nếu \(a\) chia \(b\) được thương là \(q\) số dư là \(r\) thì ta có biểu diễn: \(a=b.q + r\).
Lời giải chi tiết
Gọi số lớn là \(x\), số nhỏ là \(y\). (Điều kiện: \(x > y \ne 0\) )
Theo giả thiết tổng hai số bằng \(1006\) nên: \(x + y = 1006\).
Vì số lớn chia số nhỏ được thương là \(2\), số dư là \(124\) nên ta được: \(x = 2y + 124\)
Ta có hệ phương trình:
\(\left\{\begin{matrix} x + y = 1006& & \\ x = 2y + 124& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x + y = 1006& & \\ x -2y = 124& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} x + y = 1006& & \\ 3y = 882& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} x = 1006 - y & & \\ y = 294& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} x = 1006 - 294 & & \\ y = 294& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = 712& & \\ y = 294& & \end{matrix} (thỏa\ mãn)\right.\)
Vậy hai số tự nhiên phải tìm là \(712\) và \(294\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK