Xác định \(a\) và \(b\) để đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\) và \(B\) trong mỗi trường hợp sau:
a) \(A(2; -2)\) và \(B(-1; 3)\); b) \(A(-4; -2)\) và \(B(2; 1)\);
c) \(A(3; -1)\) và \(B(-3; 2)\); d) \(A(\sqrt{3}; 2)\) và \(B(0; 2)\).
Xác định \(a,\ b\) để đồ thị hàm số \(y=ax+b\) đi qua hai điểm \(A,\ B\).
+) Lần lượt thay tọa độ của \(A,\ B\) vào \(y=ax+b\) thì được hệ phương trình bậc nhất hai ẩn \(a,\ b\).
+) Giải hệ phương trình này, ta tìm được \(a,\ b\).
Lời giải chi tiết
a) Hàm số \(y=ax+b\) \((1)\)
Vì đồ thị hàm số đi qua \(A(2; -2)\), thay \(x=2,\ y=-2\) vào \((1)\), ta được: \(-2=2a + b\).
Vì đồ thị hàm số đi qua \(B(-1; 3)\), thay \(x=-1,\ y=3\) vào \((1)\), ta được: \(3=-a + b\).
Ta có hệ phương trình ẩn là \(a\) và \(b\).
\(\left\{\begin{matrix} 2a + b = -2 & & \\ -a + b = 3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3a = -5 & & \\ -a + b = 3 & & \end{matrix}\right. \).
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{-5}{3} & & \\ - b = a+3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a = \dfrac{-5}{3} & & \\ b = \dfrac{-5}{3}+3 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} a = -\dfrac{5}{3} & & \\ b = \dfrac{4}{3}& & \end{matrix}\right.\)
Vậy \( a = -\dfrac{5}{3}\) và \( b = \dfrac{4}{3} \).
b)
Vì đồ thị hàm số đi qua \(A(-4; -2)\), thay \(x=-4,\ y=-2\) vào \((1)\), ta được: \(-2=-4a + b \).
Vì đồ thị hàm số đi qua \(B(2; 1)\), thay \(x=2,\ y=1\) vào \((1)\), ta được: \(1=2a + b\).
Ta có hệ phương trình ẩn là \(a,\ b\):
\(\left\{\begin{matrix} -4a + b = -2 & & \\ 2a + b = 1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} -6a = -3 & & \\ 2a + b = 1& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} a=\dfrac{1}{2} & & \\ b = 1-2a & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} a = \dfrac{1}{2} & & \\ b = 1-2.\dfrac{1}{2}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} a = \dfrac{1}{2} & & \\ b = 0 & & \end{matrix}\right.\)
Vậy \(a = \dfrac{1}{2};\ b=0\).
c) Vì đồ thị hàm số đi qua \(A(3; -1)\), thay \(x=3,\ y=-1\) vào \((1)\), ta được: \(-1=3a + b\)
Vì đồ thị hàm số đi qua \(B(-3; 2)\), thay \(x=-3,\ y=2\) vào \((1)\), ta được: \(2=-3a + b\).
Ta có hệ phương trình ẩn \(a,\ b\):
\(\left\{\begin{matrix} 3a + b = -1 & & \\ -3a + b = 2& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} 3a + b = -1 & & \\ 2b = 1& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} 3a =-1 -b & & \\ b = \dfrac{1}{2}& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} 3a =-1 -\dfrac{1}{2} & & \\ b = \dfrac{1}{2}& & \end{matrix}\right.\)
⇔ \(\left\{\begin{matrix} 3a =\dfrac{-3}{2} & & \\ b = \dfrac{1}{2}& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} a =\dfrac{-1}{2} & & \\ b = \dfrac{1}{2}& & \end{matrix}\right.\)
Vậy \(a=\dfrac{-1}{2},\ b = \dfrac{1}{2}\).
d) Vì đồ thị hàm số đi qua \(A(\sqrt{3}; 2)\), thay \(x= \sqrt 3,\ y=2\) vào \((1)\), ta được: \(2= \sqrt{3}a + b \).
Vì đồ thị hàm số đi qua \(B(0; 2)\), thay \(x=0,\ y=2\) vào \((1)\), ta được: \(2= 0 . a + b \).
Ta có hệ phương trình ẩn là \(a,\ b\).
\(\left\{\begin{matrix} \sqrt{3}.a + b =2 & & \\ 0. a + b = 2& & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} \sqrt{3}.a + b =2 & & \\ b = 2& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} a = 0 & & \\ b = 2 & & \end{matrix}\right.\)
Vậy \(a=0,\ b=2\).
loigaihay.com
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK