Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2). Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Câu hỏi :

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

* Đáp án

* Hướng dẫn giải

Lời giải

*Tìm tọa độ trực tâm H của tam giác ABC:

Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC

Hay \(\overrightarrow {AH} .\overrightarrow {BC} = 0\) và \(\overrightarrow {BH} .\overrightarrow {AC} = 0\)

Giả sử H(x; y) là tọa độ trực tâm tam giác ABC

Với A(–2; 1), B(1; 4), C(5; −2) và H(x; y) ta có:

• \(\overrightarrow {AH} \) = (x + 2; y – 1) và \(\overrightarrow {BC} \) = (4; –6)

\( \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} \) = 4.(x + 2) – 6.(y – 1) = 0

4x – 6y = –14

2x – 3y = –7(1)

• \(\overrightarrow {BH} \) = (x – 1; y – 4) và \(\overrightarrow {AC} \) = (7; –3)

\( \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} \) = 7.(x – 1) – 3.(y – 4) = 0

7x – 3y = –5(2)

Trừ vế theo vế (2) cho (1) ta có: 5x = 2

x = \(\frac{2}{5}\)

Thay x = \(\frac{2}{5}\) vào (1) ta được: 2.\(\frac{2}{5}\) – 3y = –7

3y = \(\frac{{39}}{5}\)

y = \(\frac{{13}}{5}\)

\(H\left( {\frac{2}{5};\frac{{13}}{5}} \right).\)

Vậy tọa độ trực tâm của tam giác ABC là \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right).\)

* Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC:

Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:

\(\overrightarrow {AH} = 2\overrightarrow {IM} \) với M là trung điểm của BC.

Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Với A(–2; 1), B(1; 4), C(5; −2), \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right)\) và I(a; b) ta có:

• \(\overrightarrow {AH} = \left( {\frac{{12}}{5};\frac{8}{5}} \right)\)

• M là trung điểm của BC nên \(\left\{ \begin{array}{l}{x_M} = \frac{{1 + 5}}{2} = 3\\{y_M} = \frac{{4 + \left( { - 2} \right)}}{2} = 1\end{array} \right.\)

M(3; 1)

\( \Rightarrow \overrightarrow {IM} \) = (3 – a; 1 – b)

\( \Rightarrow 2\overrightarrow {IM} \) = (6 – 2a; 2 – 2b)

Ta có \(\overrightarrow {AH} = 2\overrightarrow {IM} \)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{12}}{5} = 6 - 2a\\\frac{8}{5} = 2 - 2b\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2a = \frac{{18}}{5}\\2b = \frac{2}{5}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{9}{5}\\b = \frac{1}{5}\end{array} \right.\) \( \Rightarrow I\left( {\frac{9}{5};\frac{1}{5}} \right)\)

Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là \(I\left( {\frac{9}{5};\frac{1}{5}} \right).\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 10 Bài tập cuối chương 4 có đáp án !!

Số câu hỏi: 60

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK