Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách...

Câu hỏi :

Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB, AD.

* Đáp án

* Hướng dẫn giải

Lời giải

Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoả (ảnh 1)

Chọn hệ trục tọa độ Oxy sao cho các đỉnh của hình hồ hình chữ nhật có các tọa độ là A(0; 0), B(200; 0), C(200; 180) và D(0; 180).

Gọi vị trí các cột điện được trồng là C1, C2, C3 và C4.

Vì vị trí cột điện thứ nhất C1 nằm trên bờ AB và cách A một khoảng 20 m nên trong hệ trục tọa độ đã chọn, điểm C1(20; 0).

Vị trí cột điện thứ tư nằm trên bờ CD và cách C một khoảng 30 m nên khoảng cách từ C4 đến D là 170 m. Khi đó trong hệ trục tọa độ đã chọn, điểm C4(170; 180).

Vì bốn cột điện được trồng liên tiếp nhau và cách đều trên một đường thẳng nên:

C1C2 = C2C3 = C3C4

C1C2 = \(\frac{1}{3}\)C1C4 và C1C3 = \(\frac{2}{3}\)C1C4.

\( \Rightarrow \overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \) và \(\overrightarrow {{C_1}{C_3}} = \frac{2}{3}\overrightarrow {{C_1}{C_4}} \)

Giả sử C2(a; b) và C3(x; y).

Với C1(20; 0), C4(170; 180) ta có:

\(\overrightarrow {{C_1}{C_4}} = \left( {150;180} \right)\); \(\overrightarrow {{C_1}{C_2}} = \left( {a - 20;b} \right)\) và \(\overrightarrow {{C_1}{C_3}} = \left( {x - 20;y} \right)\)

• \[\overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \Leftrightarrow \left\{ \begin{array}{l}a - 20 = \frac{1}{3}.150 = 50\\b = \frac{1}{3}.180 = 60\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = 70\\b = 60\end{array} \right.\] C2(70; 60).

d(C2; AB) = d(C2; Ox) = |b| = 60 (m).

d(C2; AD) = d(C2; Oy) = |a| = 70 (m).

• \(\overrightarrow {{C_1}{C_3}} = \frac{2}{3}\overrightarrow {{C_1}{C_4}} \)\[ \Leftrightarrow \left\{ \begin{array}{l}x - 20 = \frac{2}{3}.150 = 100\\y = \frac{2}{3}.180 = 120\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x = 120\\y = 120\end{array} \right.\] C3(120; 120).

d(C3; AB) = d(C3; Ox) = |y| = 120 (m)

d(C3; AD) = d(C3; Oy) = |x| = 120 (m).

Vậy khoảng cách từ cột điện thứ hai đến bờ AB là 60 m và đến bờ AD là 70 m.

Khoảng cách từ cột điện thứ ba đến bờ AB là 120 m và đến bờ AD là 120 m.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK