B – Tự luận
a) Có bao nhiêu cách viết một dãy 5 chữ cái in hoa từ bảng chữ cái tiếng Anh (gồm 26 chữ cái)?
b) Có bao nhiêu cách viết một dãy 5 chữ cái in hoa khác nhau từ bảng chữ cái tiếng Anh (gồm 26 chữ cái)?
Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?
Lớp 10B có 40 học sinh gồm 25 nam và 15 nữ. Hỏi có bao nhiêu cách chọn 3 bạn tham gia vào đội thiện nguyện của trường trong mỗi trường hợp sau?
a) Ba học sinh được chọn là bất kì.
b) Ba học sinh được chọn gồm 1 nam và 2 nữ.
c) Có ít nhất một nam trong ba học sinh được chọn.
Cho tam giác ABC cân tại A (A^<90°). Hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh rằng ΔBEC=ΔCFB.
b) Chứng minh rằng ΔAHF=ΔAHE.
c) Gọi I là trung điểm của BC. Chứng minh rằng ba điểm A, H, I thẳng hàng.
Cho tam giác ABC vuông tại A, vẽ đường cao AH. Trên tia đối của tia HA lấy điểm M sao cho H là trung điểm của AM.
a) Chứng minh rằng tam giác ABM cân.
b) Chứng minh rằng ΔABC=ΔMBC.
Cho tam giác ABC vuông tại A (AB < AC), vẽ đường cao AH. Trên tia đối của tia HC lấy điểm D sao cho HD = HC.
a) Chứng minh rằng AC = AD.
b) Chứng minh rằng ADB^=BAH^.
Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N.
a) Chứng minh rằng BMN^=HAC^.
b) Kẻ MI ⊥ AH (I ∈ AH), gọi K là giao điểm của AH với BM. Chứng minh rằng I là trung điểm của AK.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm N sao cho BA = BN. Kẻ BE ⊥ AN (E ∈ AN).
a) Chứng minh BE là tia phân giác của góc ABN.
b) Kẻ đường cao AH của tam giác ABC. Gọi K là giao điểm của AH với BE. Chứng minh rằng NK // CA.
c) Đường thẳng BK cắt AC tại F. Gọi G là giao điểm của đường thẳng AB với NF. Chứng minh rằng tam giác GBC cân.
Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FD = FN.
a) Chứng minh rằng ΔMFN=ΔPFD.
b) Trên đoạn thẳng FD lấy điểm H sao cho F là trung điểm của GH. Gọi K là trung điểm của DP. Chứng minh rằng ba điểm M, H, K thẳng hàng.
Cho tam giác ABC vuông tại A có AB = 12AC, AD là tia phân giác BAC^ (D ∈ BC). Gọi E là trung điểm của AC.
a) Chứng minh rằng DE = DB.
b) AB cắt DE tại K. Chứng minh rằng tam giác DCK cân và B là trung điểm của đoạn thẳng AK.
c) AD cắt CK tại H. Chứng minh rằng AH ⊥ KC.
Ở Hình 1, cho biết AE = AF và ABC^=ACB^. Chứng minh rằng AH là đường trung trực của BC.
Trên đường thẳng a lấy ba điểm phân biệt I, J, K (J ở giữa I và K). Kẻ đường thẳng b vuông góc với a tại J, trên b lấy điểm M khác điểm J. Đường thẳng qua I vuông góc với MK cắt b tại N. Chứng minh rằng KN vuông góc với MI.
Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.
a) Chứng minh rằng tam giác MBE cân.
b) Chứng minh rằng ∠EBH=∠ACM.
c) Chứng minh rằng EB⊥BC.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Liên hệ hợp tác hoặc quảng cáo: gmail
Điều khoản dịch vụ
Copyright © 2021 HOCTAPSGK