Giải bất phương trình dạng \(ax + b < 0\) (1)
- Với \(b < 0\) thì tập nghiệm BPT là S = Æ
- Với \(b \ge 0\) thì tập nghiệm BPT là \({\rm{S}} = \mathbb{R}\)
Các bất phương trình dạng \(ax + b > 0,\,\,ax + b \le 0,\,\,ax + b \ge 0\) được giải hoàn toán tương tự
Để giải hệ bất phương trình bậc nhất một ẩn ta giải từng bất phương trình của hệ bất phương trình. Khi đó tập nghiệm của hệ bất phương trình là giao của các tập nghiệm từng bất phương trình.
Biện luận nghiệm của bất phương trình theo m:
a) \(mx + 6 \le 2x + 3m\)
b) \(\left( {x + m} \right)m + x > 3x + 4\)
c) \(\left( {{m^2} + 9} \right)x + 3 \ge m\left( {1 - 6x} \right)\)
a) Bất phương trình tương đương với \(\left( {m - 2} \right)x < 3m - 6\)
Với \(m = 2\) bất phương trình trở thành \(0x \le 0\)suy ra bất phương trình nghiệm đúng với mọi \(x\).
Với \(m > 2\) bât phương trình tương đương với \(x < \frac{{3m - 6}}{{m - 2}} = 3\)
Với \(m < 2\) bât phương trình tương đương với \(x > \frac{{3m - 6}}{{m - 2}} = 3\)
Kết luận
\(m = 2\) bất phương trình nghiệm đúng với mọi \(x\)(có tập nghiệm là \(S = \mathbb{R}\)).
\(m > 2\) bât phương trình có nghiệm là \(x < 3\)(có tập nghiệm là \(S = \left( { - \infty ;3} \right)\))
\(m < 2\) bât phương trình có nghiệm là \(x > 3\)(có tập nghiệm là \(S = \left( {3; + \infty } \right)\))
b) Bất phương trình tương đương với \(\left( {m - 2} \right)x > 4 - {m^2}\)
Với \(m = 2\) bất phương trình trở thành \(0x > 0\)suy ra bất phương trình vô nghiệm.
Với \(m > 2\) bât phương trình tương đương với \(x > \frac{{4 - {m^2}}}{{m - 2}} = - m - 2\)
Với \(m < 2\) bât phương trình tương đương với \(x < \frac{{4 - {m^2}}}{{m - 2}} = - m - 2\)
Kết luận
\(m = 2\) bất phương trình vô nghiệm
\(m > 2\) bât phương trình có nghiệm là \(x > - m - 2\)
\(m < 2\) bât phương trình có nghiệm là \(x < - m - 2\)
c) Bất phương trình tương đương với \({\left( {m + 3} \right)^2}x \ge m - 3\)
Với \(m = - 3\) bất phương trình trở thành \(0x \ge - 6\)suy ra bất phương trình nghiệm đúng với mọi \(x\).
Với \(m \ne - 3\) bât phương trình tương đương với \(x \ge \frac{{m - 3}}{{{{\left( {m + 3} \right)}^2}}}\)
Kết luận
\(m = - 3\) bất phương trình nghiệm đúng với mọi \(x\).
\(m \ne - 3\) bât phương trình có nghiệm là \(x \ge \frac{{m - 3}}{{{{\left( {m + 3} \right)}^2}}}\).
Giải các hệ bất phương trình sau:
a) \(\left\{ \begin{array}{l}5x - 2 > 4x + 5\\5x - 4 < x + 2\end{array} \right.\)
b) \(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 1 \le 2x - 3\\3x < x + 5\\\frac{{5 - 3x}}{2} \le x - 3\end{array} \right.\)
a) Hệ bất phương trình tương đương với
\(\left\{ \begin{array}{l}5x - 2 > 4x + 5\\5x - 4 < x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 7\\x < \frac{3}{2}\end{array} \right.\)
Suy ra hệ bất phương trình vô nghiệm.
b) Hệ bất phương trình tương đương với
\(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{{22}}{7}\\x < \frac{7}{4}\end{array} \right. \Leftrightarrow x < \frac{7}{4}\)
Vậy hệ bất phương trình có nghiệm là \(x < \frac{7}{4}\)
d) Hệ bất phương trình tương đương với \(\left\{ \begin{array}{l}x \ge 2\\x < \frac{5}{2}\\x \ge \frac{{11}}{5}\end{array} \right. \Leftrightarrow \frac{{11}}{5} \le x \le \frac{5}{2}\)
Vậy hệ bất phương trình có nghiệm là \(\frac{{11}}{5} \le x \le \frac{5}{2}\).
Tìm \(m\) để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{m\left( {mx - 1} \right) < 2}\\{m\left( {mx - 2} \right) \ge 2m + 1}\end{array}} \right.\) có nghiệm.
Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)
Với \(m = 0\) ta có hệ bất phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\) suy ra hệ bất phương trình vô nghiệm
Với \(m \ne 0\) ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)
Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \(\frac{{m + 2}}{{{m^2}}} > \frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\)
Vậy \(m < \frac{1}{3}\) là giá trị cần tìm.
Cho bất phương trình \(\sqrt {x - 1} (x - 2m + 2) \ge 0\)
a) Giải bất phương trình khi \(m = 2\)
b) Tìm \(m\) để mọi \(x \in \left[ {2;3} \right]\) đều là nghiệm của bất phương trình đã cho.
a) Khi \(m = 2\) bất phương trình trở thành \(\sqrt {x - 1} (x - 2) \ge 0\)
Bất phương trình tương đương với \(\left[ {\begin{array}{*{20}{c}}{\sqrt {x - 1} = 0}\\{\left\{ \begin{array}{l}x - 1 \ge 0\\x - 2 \ge 0\end{array} \right.}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{\left\{ {\begin{array}{*{20}{c}}{x \ge 1}\\{x \ge 2}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x \ge 2}\end{array}} \right.\)
Vậy tập nghiệm bất phương trình là \({\rm{S}} = \left\{ 1 \right\} \cup {\rm{[}}2; + \infty )\).
b) Bất phương trình tương đương với \(\left[ {\begin{array}{*{20}{c}}{\sqrt {x - 1} = 0}\\{\left\{ \begin{array}{l}x - 1 \ge 0\\x - 2m + 2 \ge 0\end{array} \right.}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{\left\{ \begin{array}{l}x \ge 1\\x \ge 2m - 2\end{array} \right.}\end{array}} \right.\)
+ TH1: \(2m - 2 > 1 \Leftrightarrow m > \frac{3}{2}\): Ta có bất phương trình\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x \ge 2m - 2}\end{array}} \right.\)
Suy ra tập nghiệm bất phương trình là \(S = \left\{ 1 \right\} \cup [2m - 2; + \infty )\).
Do đó mọi \(x \in \left[ {2;3} \right]\) đều là nghiệm của bất phương trình (*)
\( \Leftrightarrow \left[ {2;3} \right] \subset S \Leftrightarrow 2m - 2 \le 2 \Leftrightarrow m \le 2\)
Suy ra \(\frac{3}{2} < m \le 2\) thỏa mãn yêu cầu bài toán.
+ TH2: \(2m - 2 = 1 \Leftrightarrow m = \frac{3}{2}\): Ta có bất phương trình\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x \ge 1}\end{array} \Leftrightarrow x \ge 1} \right.\)
Suy ra \(m = \frac{3}{2}\) thỏa mãn yêu cầu bài toán.
+ TH3: \(2m - 2 < 1 \Leftrightarrow m < \frac{3}{2}\): Ta có bất phương trình\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x \ge 1}\end{array} \Leftrightarrow x \ge 1} \right.\)
Suy ra \(m < \frac{3}{2}\)thỏa mãn yêu cầu bài toán.
Vậy giá trị cần tìm là \(m \le 2\).
Trong phạm vi bài học HOCTAP247 giới thiệu đến các em khái niệm cơ bản về bất phương trình và hệ bất phương trình bậc nhất một ẩn và phương pháp giải bất phương trình và hệ bất phương trình bậc nhất một ẩn
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 4 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 5- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 4 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.
Bài tập 4.33 trang 110 SBT Toán 10
Bài tập 21 trang 116 SGK Toán 10 NC
Bài tập 22 trang 116 SGK Toán 10 NC
Bài tập 23 trang 116 SGK Toán 10 NC
Bài tập 24 trang 116 SGK Toán 10 NC
Bài tập 25 trang 121 SGK Toán 10 NC
Bài tập 26 trang 121 SGK Toán 10 NC
Bài tập 27 trang 121 SGK Toán 10 NC
Bài tập 28 trang 121 SGK Toán 10 NC
Bài tập 29 trang 121 SGK Toán 10 NC
Bài tập 30 trang 121 SGK Toán 10 NC
Bài tập 31 trang 121 SGK Toán 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK