Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có tập xác định lần lượt là \({{\rm{D}}_f}\) và \({{\rm{D}}_g}\). Đặt \({\rm{D}} = {D_f} \cap {D_g}.\) Mệnh đề chứa biến "\(f(x) = g(x)\)" được gọi là phương trình một ẩn ; \(x\) được gọi là ẩn số (hay ẩn) và \({\rm{D}}\) gọi là tập xác định của phương trình.
\({x_0} \in D\) gọi là một nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) nếu "\(f(x) = g(x)\)" là mệnh đề đúng.
Chú ý: Các nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\) là các hoành độ giao điểm đồ thị hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\).
Hai phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\) và \({f_2}\left( x \right) = {g_2}\left( x \right)\) được gọi là tương đương nếu chúng có cùng tập nghiệm. Kí hiệu là \({f_1}\left( x \right) = {g_1}\left( x \right) \Leftrightarrow {f_2}\left( x \right) = {g_2}\left( x \right)\).
\({f_2}\left( x \right) = {g_2}\left( x \right)\) gọi là phương trình hệ quả của phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\) nếu tập nghiệm của nó chứa tập nghiệm của phương trình \({f_1}\left( x \right) = {g_1}\left( x \right)\).
Kí hiệu là \({f_1}\left( x \right) = {g_1}\left( x \right) \Rightarrow {f_2}\left( x \right) = {g_2}\left( x \right)\)
Định lý 1: Cho phương trình \(f\left( x \right) = g\left( x \right)\) có tập xác định \({\rm{D}}\); \(y = h\left( x \right)\) là hàm số xác định trên \({\rm{D}}\). Khi đó trên \({\rm{D}}\), phương trình đã cho tương đương với phương trình sau:
\(1)\,\,f\left( x \right) + h\left( x \right) = g\left( x \right) + h\left( x \right)\)
\(2)\,\,f\left( x \right).h\left( x \right) = g\left( x \right).h\left( x \right)\) nếu \(h\left( x \right) \ne 0\) với mọi \(x \in D\)
Định lý 2: Khi bình phương hai vế của một phương trình, ta được phương trình hệ quả của phương trình đã cho.
\(f\left( x \right) = g\left( x \right) \Rightarrow {f^2}\left( x \right) = {g^2}\left( x \right)\).
Lưu ý: Khi giải phương trình ta cần chú ý
Phương pháp giải
- Điều kiện xác định của phương trình bao gồm các điều kiện để giá trị của \(f\left( x \right),\,\,g\left( x \right)\) cùng được xác định và các điều kiện khác (nếu có yêu cầu trong đề bài)
- Điều kiện để biểu thức
Tìm điều kiện xác định của phương trình sau:
a) \(x + \frac{5}{{{x^2} - 4}} = 1\)
b) \(1 + \sqrt {3 - x} = \sqrt {x - 2} \)
a) Điều kiện xác định của phương trình là \({x^2} - 4 \ne 0 \Leftrightarrow {x^2} \ne 4 \Leftrightarrow x \ne \pm 2.\)
b) Điều kiện xác định của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{3 - x \ge 0}\\{x - 2 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 3}\\{x \ge 2}\end{array}} \right. \Leftrightarrow 2 \le x \le 3.\)
Tìm điều kiện xác định của phương trình sau rồi suy ra tập nghiệm của nó:
a) \(4x + \sqrt {4x - 3} = 2\sqrt {3 - 4x} + 3\)
b) \(\sqrt { - {x^2} + 6x - 9} + {x^3} = 27\)
a) Điều kiện xác định của phương trình là\(\left\{ {\begin{array}{*{20}{c}}{4{\rm{x}} - 3 \ge 0}\\{3 - 4{\rm{x}} \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge \frac{3}{4}}\\{x \le \frac{3}{4}}\end{array} \Leftrightarrow x = \frac{3}{4}} \right.\)
Thử vào phương trình thấy \(x = \frac{3}{4}\) thỏa mãn
Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ {\frac{3}{4}} \right\}.\)
b) Điều kiện xác định của phương trình là \( - {x^2} + 6x - 9 \ge 0 \Leftrightarrow - {\left( {x - 3} \right)^2} \ge 0 \Leftrightarrow x = 3\)
Thay \({\rm{x}} = 3\) vào thấy thỏa mãn phương trình
Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ 3 \right\}.\)
Phương pháp giải:
Để giải phương trình ta thực hiện các phép biến đổi để đưa về phương trình tương đương với phương trình đã cho đơn giản hơn trong việc giải nó. Một số phép biến đổi thường sử dụng
Tìm số nghiệm của các phương trình sau:
a) \(1 + \frac{1}{{x - 3}} = \frac{5}{{{x^2} - x - 6}}\)
b) \(\frac{{{x^2}}}{{\sqrt {x - 2} }} = \frac{1}{{\sqrt {x - 2} }} - \sqrt {x - 2} \)
a) ĐKXĐ : \(\left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{{x^2} - x - 6 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{x \ne - 2}\end{array}} \right.\)
Với điều kiện đó phương trình tương đương với
\(1 + \frac{1}{{x - 3}} = \frac{5}{{\left( {x - 3} \right)\left( {x + 2} \right)}} \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) + x + 2 = 5\)
\( \Leftrightarrow {x^2} = 9 \Leftrightarrow x = \pm 3\)
Đối chiếu với điều kiện ta có nghiệm của phương trình là \({\rm{x}} = - 3\).
b) ĐKXĐ: \({\rm{x}} > 2\)
Với điều kiện đó phương trình tương đương với
\({x^2} = 1 - \left( {x - 2} \right) \Leftrightarrow {x^2} + x - 3 = 0 \Leftrightarrow x = \frac{{ - 1 \pm \sqrt {13} }}{2}\)
Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm.
Tìm \(m\) để cặp phương trình sau tương đương
\(m{x^2} - 2\left( {m - 1} \right)x + m - 2 = 0\) (1) và \(\left( {m - 2} \right){x^2} - 3x + {m^2} - 15 = 0\) (2)
Giả sử hai phương trình (1) và (2) tương đương
Ta có \(\left( 1 \right) \Leftrightarrow \left( {x - 1} \right)\left( {mx - m + 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{mx - m + 2 = 0}\end{array}} \right.\)
Do hai phương trình tương đương nên \(x = 1\) là nghiệm của phương trình (2)
Thay \(x = 1\) vào phương trình (2) ta được
\(\left( {m - 2} \right) - 3 + {m^2} - 15 = 0 \Leftrightarrow {m^2} + m - 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}\\{m = - 5}\end{array}} \right.\)
Phương trình (2) trở thành \( - 7{x^2} - 3x + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{{10}}{7}}\end{array}} \right.\)
Suy ra hai phương trình không tương đương
Phương trình (2) trở thành \(2{x^2} - 3x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)
Suy ra hai phương trình tương đương
Vậy \(m = 4\)thì hai phương trình tương đương.
Trong phạm vi bài học HOCTAP247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về khái niệm cơ bản nhất đại cương về phương trình. Về các thuật ngữ có vẻ hết sức quen thuộc. Khái niệm Phương trình các em đã bước đầu được tìm hiểu ở chương trình Toán lớp 8, lên bậc THPT chúng ta sẽ được học nâng cao hơn, các em cần tìm hiểu thêm.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Chương 3 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 5- Câu 13: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Chương 3 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.
Bài tập 3.5 trang 57 SBT Toán 10
Bài tập 3.6 trang 57 SBT Toán 10
Bài tập 3.7 trang 57 SBT Toán 10
Bài tập 3.8 trang 57 SBT Toán 10
Bài tập 3.9 trang 57 SBT Toán 10
Bài tập 3.10 trang 58 SBT Toán 10
Bài tập 3.11 trang 58 SBT Toán 10
Bài tập 3.12 trang 58 SBT Toán 10
Bài tập 1 trang 71 SGK Toán 10 NC
Bài tập 2 trang 71 SGK Toán 10 NC
Bài tập 3 trang 71 SGK Toán 10 NC
Bài tập 4 trang 71 SGK Toán 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK