Tìm tập xác định của các hàm số sau:
a) \(y= \frac{3x-2}{2x+1};\)
b) \(y= \frac{x-1}{x^{2}+2x-3}\);
c) \(y= \sqrt{2x+1}-\sqrt{3-x}.\)
Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.
Một số chú ý:
1) \(\frac{A}{B}\) có nghĩa khi \(B \ne 0\)
2) \(\sqrt A \) có nghĩa khi \(A \ge 0\)
3) \(\frac{1}{{\sqrt A }}\) có nghĩa khi \(A > 0\)
Lời giải chi tiết
a) \(\frac{3x-2}{2x+1}\) có nghĩa với \(x ∈ \mathbb R\) khi \(2x + 1 ≠ 0\Leftrightarrow x \ne - {1 \over 2}\).
Vậy tập xác định của hàm số \(y= \frac{3x-2}{2x+1}\) là:
\(D = \left \{ x\in\mathbb R|x\neq \frac{-1}{2} \right \}\)
Hay \(D=\mathbb R\setminus \left \{ \frac{-1}{2} \right \}.\)
b)
\({x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \matrix{
x = - 3 \hfill \cr
x = 1 \hfill \cr} \right.\)
Vậy tập xác định của hàm số \(y= \frac{x-1}{x^{2}+2x-3}\) là: \(D = \left\{ {x \in\mathbb R|{x^2} + 2x - 3 \ne 0} \right\}\)
Hay \(D =\mathbb R\backslash \left\{ { - 3;1} \right\}\)
c) \(\sqrt{2x+1}\) có nghĩa với \(x ∈\mathbb R\) khi \(2x + 1 ≥ 0\)
\(\sqrt{3-x}\) có nghĩa với \(x ∈\mathbb R\) khi \(3 - x ≥ 0\)
Vậy tập xác định của hàm số \(y= \sqrt{2x+1}-\sqrt{3-x}\) là:
\(D = D_1∩ D_2\), trong đó:
\({D_1} = \left\{ {x \in\mathbb R|2x + 1 \ge 0} \right\}\)\(= \left [ \frac{-1}{2}; +\infty \right )\)
\({D_2} = \left\{ {x \in R|3 - x \ge 0} \right\}=\left ( -\infty ;3 \right ]\)
\(\Rightarrow D= \left [ \frac{-1}{2};+\infty \right )\cap \left ( -\infty ;3 \right ]\)\(= \left [ \frac{-1}{2};3 \right ].\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK