fqdsqe">
1. Hệ phương trình bậc nhất hai ẩn- Hệ phương trình bậc nhất hai ẩn có dạng:
Trong đó x, y là ẩn số, các chữ số a, b, h, k, c, d là các hệ số
- Nếu cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình của hệ phương trình (*) thì ta gọi (x0; y0) là nghiệm của hệ phương trình (*)
- Giải hệ phương trình (*) ta tìm được tập nghiệm của nó
2. Cách tìm m để hệ phương trình có nghiệm duy nhất
Bước 1: Sử dụng phương pháp thế hoặc cộng đại số để giải hệ phương trình theo ẩn m.
Bước 2: Biện luận chứng minh hệ luôn có nghiệm duy nhất.
Bước 3: Kết luận.
3. Bài tập tìm m để hệ phương trình có nghiệm duy nhất
Ví dụ 1: Cho hệ phương trình với m là tham số.
a) Giải hệ phương trình khi m = 2.
b) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3
Hướng dẫn giải
a) Giải hệ phương trình khi m = 2
Thay m = 2 vào hệ phương trình ta được:
Vậy khi m = 2 hệ phương trình có nghiệm (x; y) = (1; 1)
b) Rút y từ phương trình thứ nhất ta được
y = 2 – (m – 1)x thế vào phương trình còn lại ta được phương trình:
3m + 2 – (m – 1)x = m + 1
<=> x = m – 1
Suy ra y = 2(m – 1)2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất (x; y) = (m – 1; 2 – (m – 1)2)
2x + y = 2(m – 1) + 2 – (m – 1)2 = -m2 + 4m – 1 = 3 – (m – 2)2 ≤ 3 với mọi giá trị của m.
Ví dụ 2: Cho hệ phương trình:
a) Giải hệ phương trình với m = 1
b) Tìm m để hệ phương trình có nghiệm duy nhất.
Hướng dẫn giải
a) Giải hệ phương trình khi m = 1
Thay m = 1 vào hệ phương trình ta được:
Vậy khi m = 1 hệ phương trình có nghiệm (x; y) = (-1; -2)
b) Ta xét hai trường hợp:
Trường hợp 1: Nếu m = 0 hệ phương trình trở thành
Vậy với m = 0 hệ phương trình có nghiệm duy nhất.
Trường hợp 2: Nếu m ≠ 0 hệ có nghiệm duy nhất khi và chỉ khi (luôn đúng, vì m2 ≥ 0 với mọi m)
Do đó, với m ≠ 0 hệ luôn có nghiệm duy nhất.
Vậy hệ phương trình đã cho luôn có nghiệm với mọi giá trị của m.
Ví dụ 3: Cho hệ phương trình với m là tham số
a) Giải hệ phương trình khi m = 2.
b) Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn
Hướng dẫn giải
a) Học sinh tự giải hệ phương trình.
b) Xét hệ
Từ (2) suy ra y = 2m – mx thay vào (1) ta được
x + m(2m – mx) = m + 1
<=> 2m2 – m2x + x = m + 1
<=> (1 – m2)x = -2m2 + m + 1
<=> (m2 – 1)x = 2m2 – m – 1 (3)
Hệ phương trình đã cho có nghiệm duy nhất
<=> (3) có nghiệm duy nhất
m2 – 1 ≠ 0 => m ≠ ± 1 (*)
Khi đó hệ đã cho có nghiệm duy nhất là