Giải Toán lớp 9 trang 27 tập 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi và 5 bài tập trong SGK bài 6 Biến đổi đơn giản biểu thức chứa căn thức bậc hai.
Giải Toán 9 Bài 6 tập 1 Biến đổi đơn giản biểu thức chứa căn thức bậc hai được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán. Giải Toán lớp 9 trang 27 tập 1 là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.
Giải Toán 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Trả lời câu hỏi Toán 9 Bài 6
Câu hỏi 1 (SGK trang 24): Với a ≥ 0, b ≥ 0, chứng tỏ √(a2 b) = a√b.
Lời giải chi tiết
√(a2 b) = √(a2 ).√b = |a| √b = a√b (do a ≥ 0; b ≥ 0)
Câu hỏi 2 (SGK trang 25): Rút gọn biểu thức
a) √2 + √8 + √50;
b) 4√3 + √27 - √45 + √5.
Lời giải chi tiết
a) √2 + √8 + √50 = √2 + √(22.2) + √(52.2)
= √2 + 2√2 + 5√2 = 8√2
b) 4√3 + √27 – √45 + √5 = 4√3 + √(32.3) - √(32.5) + √5
= 4√3 + 3√3 - 3√5 + √5 = 7√3 - 2√5
Câu hỏi 3 (SGK trang 25): Đưa thừa số ra ngoài dấu căn
a) √(28a4b2) với b ≥ 0; b) √(72a2b4) với a < 0.
Lời giải chi tiết
a) √(28a4b2) = √((2a2b)2.7) = √7 |2a2b| = 2√7a2b (do b ≥ 0)
b) √(72a2b4) = √((6ab2)2.2) = √2 |6ab2| = -6√2ab2 (do a < 0)
Câu hỏi 4 (SGK trang 26): Đưa thừa số vào trong căn:
| a) 3√5; | b) 1,2√5; | c) ab4√a với a ≥ 0; | d) -2ab2√5a với a ≥ 0. |
Lời giải chi tiết
a) 3√5 = √(32.5)=√45
b) 1,2√5 = √(1,22.5)= √7,2
c) ab4√a = √((ab4)2a)= √(a2b^8 a)= √(a3b8 )
d) -2ab2√5a = -√((2ab2)2.5a) = -√(4a2b4.5a)= -√(20a3b4)
Giải bài tập Toán 9 trang 27 tập 1
Bài 43 (trang 27 SGK Toán 9 Tập 1)
Viết các số hoặc biểu thức dấu căn thành dạng tích rồi đưa thừa số ra ngoài dấu căn:
![]()
![]()
![]()
![]()
![]()
Hướng dẫn giải
- Với
ta có:
, nghĩa là:
+ Nếu
thì ![]()
+ Nếu
thì ![]()
- Ngược lại đưa thừa số vào căn:
+ Nếu
thì ![]()
+ Nếu
thì ![]()
Gợi ý đáp án
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
Bài 44 (trang 27 SGK Toán 9 Tập 1)
Đưa thừa số vào trong dấu căn:
với
với x > 0.
Hướng dẫn giải
- Với
ta có:
, nghĩa là:
+ Nếu
thì ![]()
+ Nếu
thì ![]()
- Ngược lại đưa thừa số vào căn:
+ Nếu
thì ![]()
+ Nếu
thì ![]()
Gợi ý đáp án
Ta có:
![]()
![]()
+) Với xy>0 thì
có nghĩa nên ta có:

+) Với x>0 thì
có nghĩa nên ta có:
![]()
Bài 45 (trang 27 SGK Toán 9 Tập 1)
So sánh:
a.
và ![]()
b. 7 và ![]()
c.
và ![]()
![]()
Gợi ý đáp án
a.
và ![]()
Ta có:
![]()
Vì ![]()
![]()
Vậy:![]()
Cách khác:
![]()
b. 7 và ![]()
Ta có:
![]()
![]()
Vì ![]()
Vậy: ![]()
c.
và ![]()
Ta có:

![]()

![]()
Vì ![]()
![]()
Vậy: ![]()
![]()
Ta có:

![]()
![]()
Vì ![]()
![]()
Vậy: ![]()
Bài 46 (trang 27 SGK Toán 9 Tập 1)
Rút gọn các biểu thức sau với![]()
![]()
b. ![]()
Gợi ý đáp án
Ta có: ![]()
![]()
![]()
b. ![]()
Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là ![]()
Ta có:
![]()
![]()
![]()
![]()
![]()
Bài 47 (trang 27 SGK Toán 9 Tập 1)
Rút gọn:
với x ≥ 0; y ≥ 0 và x ≠ y
với a > 0,5.
Gợi ý đáp án
a. Ta có: Vì
và
nên ![]()



![]()

với a > 0,5.
Ta có:
![]()
![]()
![]()
Vì a> 0,5 nên a>0 ![]()
Vì
hay 1<2a
![]()
=-1+2a=2a-1
Thay vào trên, ta được:
![]()
Vậy ![]()
Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Đưa thừa số ra ngoài dấu căn
1. Đưa thừa số ra ngoài dấu căn
Với hai biểu thức A, B mà
, ta có
tức là:
Nếu A\geq 0 và
thì ![]()
Nếu A<0 và
thì ![]()
Ví dụ: Với
ta có:![]()
2. Đưa thừa số vào trong dấu căn
Với
và
thì ![]()
Với A<0 và
thì ![]()
Ví dụ: Với x<0 ta có:![]()
3. Khử mẫu của biểu thức lấy căn
Với hai biểu thức A, B mà
và
, ta có:

Ví dụ: Với
ta có:
4. Trục căn thức ở mẫu
Với hai biểu thức A, B mà B>0, ta có

Với các biểu thức A, B, C mà
và
, ta có

Với các biểu thức A, B, C mà A\geq 0,
và
, ta có:
