Giải Toán 9 trang 18, 19, 20 - SGK Toán 9 Tập 1

Giải Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương

Giải SGK Toán 9 Tập 1 (trang 18, 19, 20)

Giải Toán lớp 9 trang 18, 19, 20 tập 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi và 9 bài tập trong SGK bài 4 Liên hệ giữa phép chia và phép khai phương.

Giải Toán 9 Bài 4 tập 1 Liên hệ giữa phép chia và phép khai phương được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán. Giải Toán lớp 9 trang 18, 19, 20 là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Trả lời câu hỏi Toán 9 Bài 4

Câu hỏi 1 trang 16

Tính và so sánh: \sqrt {\frac{{16}}{{25}}}\frac{{\sqrt {16} }}{{\sqrt {25} }}

Hướng dẫn giải:

\left\{ {\begin{array}{*{20}{c}}
  {\sqrt {\dfrac{{16}}{{25}}}  = \sqrt {\dfrac{{{4^2}}}{{{5^2}}}}  = \sqrt {{{\left( {\dfrac{4}{5}} \right)}^2}}  = \dfrac{4}{5}} \\ 
  {\dfrac{{\sqrt {16} }}{{\sqrt {25} }} = \dfrac{{\sqrt {{4^2}} }}{{\sqrt {{5^2}} }} = \dfrac{4}{5}} 
\end{array}} \right. \Rightarrow \sqrt {\dfrac{{16}}{{25}}}  = \dfrac{{\sqrt {16} }}{{\sqrt {25} }}

Câu hỏi 2 trang 17

Tính:

a. \sqrt {\frac{{225}}{{256}}}b. \sqrt {0,0196}

Hướng dẫn giải:

a. \sqrt {\frac{{225}}{{256}}}  = \sqrt {\frac{{{{15}^2}}}{{{{16}^2}}}}  = \sqrt {{{\left( {\frac{{15}}{{16}}} \right)}^2}}  = \frac{{15}}{{16}}

b. \sqrt {0,0196}  = \sqrt {\frac{{196}}{{10000}}}  = \sqrt {\frac{{{{14}^2}}}{{{{100}^2}}}}  = \sqrt {{{\left( {\frac{{14}}{{100}}} \right)}^2}}  = \frac{{14}}{{100}} = 0,14

Câu hỏi 3 trang 18

Tính:

a. \frac{{\sqrt {999} }}{{\sqrt {111} }}b. \frac{{\sqrt {52} }}{{\sqrt {117} }}

Hướng dẫn giải:

a. \frac{{\sqrt {999} }}{{\sqrt {111} }} = \sqrt {\frac{{999}}{{111}}}  = \sqrt 9  = 3

b. \frac{{\sqrt {52} }}{{\sqrt {117} }} = \sqrt {\frac{{52}}{{117}}}  = \sqrt {\frac{4}{9}}  = \frac{2}{3}

Câu hỏi 3 trang 18

Rút gọn:

a. \sqrt {\frac{{2{a^2}{b^4}}}{{50}}} b. \frac{{\sqrt {2a{b^2}} }}{{\sqrt {162} }} với a \geqslant 0

Hướng dẫn giải:

a. \sqrt {\frac{{2{a^2}{b^4}}}{{50}}}  = \sqrt {\frac{{{a^2}{{\left( {{b^2}} \right)}^2}}}{{25}}}  = \sqrt {{{\left( {\frac{{a{b^2}}}{5}} \right)}^2}}  = \frac{{\left| a \right|.{b^2}}}{5}

Khi a \geqslant 0 \Rightarrow \left| a \right| = a \Rightarrow \sqrt {\frac{{2{a^2}{b^4}}}{{50}}}  = \frac{{a{b^2}}}{5}

Khi a < 0 \Rightarrow \left| a \right| =  - a \Rightarrow \sqrt {\frac{{2{a^2}{b^4}}}{{50}}}  = \frac{{ - a{b^2}}}{5}

fv1" style="text-align:center">Giả bài tập toán 9 trang 18, 19, 20 tập 1

fv2">Bài 28 (trang 18 SGK Toán 9 Tập 1)

Tính:a) \sqrt{\dfrac{289}{225}};

b) \sqrt{2\dfrac{14}{25}};

c) \sqrt{\dfrac{0,25}{9}} ;

d) \sqrt{\dfrac{8,1}{1,6}}.

Gợi ý đáp án 

a) Ta có:

\sqrt{\dfrac{289}{225}}=\dfrac{\sqrt{289}}{\sqrt{225}}=\dfrac{\sqrt {17^2}}{\sqrt{15^2}}=\dfrac{17}{15}.

b) Ta có:

\sqrt{2\dfrac{14}{25}}=\sqrt{\dfrac{2.25+14}{25}}=\sqrt{\dfrac{50+14}{25}}

=\sqrt{\dfrac{64}{25}}=\dfrac{\sqrt{64}}{\sqrt{25}}=\dfrac{\sqrt{8^2}}{\sqrt{5^2}}=\dfrac{8}{5}.

c) Ta có:

\sqrt{\dfrac{0,25}{9}}=\dfrac{\sqrt{0,25}}{\sqrt{9}}=\dfrac{\sqrt{0,5^2}}{\sqrt{3^2}}=\dfrac{0,5}{3}

=0,5.\dfrac{1}{3}=\dfrac{1}{2}.\dfrac{1}{3}=\dfrac{1}{6}.

d) Ta có:

\sqrt{\dfrac{8,1}{1,6}}=\sqrt{\dfrac{81.0,1}{16.0,1}}=\sqrt{\dfrac{81}{16}}=\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{\sqrt{9^2}}{\sqrt{4^2}}=\dfrac{9}{4}.

fv3">Bài 29 (trang 19 SGK Toán 9 Tập 1)

Tính:

a. \dfrac{\sqrt{2}}{\sqrt{18}}

b. \dfrac{\sqrt{15}}{\sqrt{735}}

c. \dfrac{\sqrt{12500}}{\sqrt{500}}

d. \dfrac{\sqrt{6^{5}}}{\sqrt{2^{3}.3^{5}}}

Gợi ý đáp án

a. \dfrac{\sqrt{2}}{\sqrt{18}}

\dfrac{\sqrt{2}}{\sqrt{18}}=\sqrt{\dfrac{2}{18}}=\sqrt{\dfrac{2.1}{2.9}}=\sqrt{\dfrac{1}{9}}=\sqrt {{{\left( {\dfrac{1}{3}} \right)}^2}} =\dfrac{1}{3}.

b. \dfrac{\sqrt{15}}{\sqrt{735}}

\dfrac{\sqrt{15}}{\sqrt{735}}=\sqrt{\dfrac{15}{735}}=\sqrt{\dfrac{15.1}{15.49}}=\sqrt{\dfrac{1}{49}}=\sqrt {{{\left( {\dfrac{1}{7}} \right)}^2}}

c. \dfrac{\sqrt{12500}}{\sqrt{500}}

\dfrac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\dfrac{12500}{500}}=\sqrt{\dfrac{500.25}{500}}

=\sqrt{25}=\sqrt{5^2}=5.

d. \dfrac{\sqrt{6^{5}}}{\sqrt{2^{3}.3^{5}}}

\dfrac{\sqrt{6^{5}}}{\sqrt{2^{3}.3^{5}}}=\sqrt{\dfrac{6^5}{2^3.3^5}}=\sqrt{\dfrac{(2.3)^5}{2^3.3^5}}=\sqrt{\dfrac{2^5.3^5}{2^3.3^5}}

=\sqrt{\dfrac{2^5}{2^3}}=\sqrt{\dfrac{2^3.2^2}{2^3}}=\sqrt{2^2}=2

Bài 30 (trang 19 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

Gợi ý đáp án

a. \dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}} với x > 0,\ y ≠ 0;

Ta có:

\dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}}=\dfrac{y}{x}.\dfrac{\sqrt{x^2}}{\sqrt{y^{4}}}

=\dfrac{y}{x}.\dfrac{\sqrt{x^2}}{\sqrt{(y^2)^2}}=\dfrac{y}{x}.\dfrac{|x|}{|y^2|}

Vì x> 0 nên |x|=x.

y \ne 0 nên y^2 > 0 \Rightarrow |y^2|=y^2.

\Rightarrow \dfrac{y}{x}.\dfrac{|x|}{|y^2|} =\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{y}{x}.\dfrac{x}{y.y}=\dfrac{1}{y}.

Vậy \dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}}=\dfrac{1}{y}.

b. 2 y^{2}. \sqrt{\dfrac{x^{4}}{4y^{2}}} với y < 0

Ta có:

2y^2.\sqrt{\dfrac{x^{4}}{4y^{2}}}=2y^2.\dfrac{\sqrt{x^4}}{\sqrt{4y^2}}=2y^2.\dfrac{\sqrt{(x^2)^2}}{\sqrt{2^2.y^2}}

=2y^2.\dfrac{\sqrt{(x^2)^2}}{\sqrt{(2y)^2}}=2y^2.\dfrac{|x^2|}{|2y|}

x^2 \ge 0 \Rightarrow |x^2|=x^2.

Vì y<0 nên 2y < 0 \Rightarrow |2y|=-2y

\Rightarrow 2y^2.\dfrac{|x^2|}{|2y|}=2y^2.\dfrac{x^2}{-2y}=\dfrac{2y^2.x^2}{-2y}

=\dfrac{x^2.y.2y}{-2y}=-x^2y.

Vậy 2y^2.\sqrt{\dfrac{x^{4}}{4y^{2}}}=-x^2y.

c. 5xy. \sqrt{\dfrac{25x^{2}}{y^{6}}} với x < 0,\ y > 0

Ta có:

5xy.\sqrt{\dfrac{25x^{2}}{y^{6}}}=5xy.\dfrac{\sqrt{25x^2}}{\sqrt{y^6}}=5xy.\dfrac{\sqrt{5^2.x^2}}{\sqrt{(y^3)^2}}

=5xy.\dfrac{\sqrt{(5x)^2}}{\sqrt{(y^3)^2}}=5xy.\dfrac{|5x|}{|y^3|}

Vì x<0 nên |5x|=-5x

Vì y>0 \Rightarrow y^3 >0 \Rightarrow |y^3|=y^3.

\Rightarrow 5xy.\dfrac{|5x|}{|y^3|}=5xy.\dfrac{-5x}{y^3}=\dfrac{5xy.(-5x)}{y^3}

=\dfrac{[5.(-5)].(x.x).y}{y^2.y}=\dfrac{-25x^2}{y^2}

Vậy 5xy.\sqrt{\dfrac{25x^{2}}{y^{6}}}=\dfrac{-25x^2}{y^2}.

d. 0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}} với x ≠ 0,\ y ≠ 0

Ta có:

0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}}=0,2x^3y^3.\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}

=0,2x^3y^3\dfrac{\sqrt{4^2}}{\sqrt{(x^2)^2.(y^4)^2}}

=0,2x^3y^3.\dfrac{\sqrt{4^2}}{\sqrt{(x^2)^2}.\sqrt{(y^4)^2}}=0,2x^3y^3.\dfrac{4}{|x^2|.|y^4|}.

x \ne 0,\ y \ne 0 nên x^2 > 0 và y^4 > 0

\Rightarrow |x^2| =x^2 và |y^4|=y^4.

\Rightarrow 0,2x^3y^3.\dfrac{4}{|x^2|.|y^4|}=0,2x^3y^3.\dfrac{4}{x^2y^4}

=\dfrac{0,2x^3y^3.4}{x^2y^4}

=\dfrac{0,8x}{y}.

Vậy 0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}}=\dfrac{0,8x}{y}.

fv4">Bài 31 (trang 19 SGK Toán 9 Tập 1)

a. So sánh \sqrt{25 - 16}\sqrt {25} - \sqrt {16}

b. Chứng minh rằng: với a > b >0 thì \sqrt a - \sqrt b < \sqrt {a - b}

Gợi ý đáp án

a. So sánh \sqrt{25 - 16}\sqrt {25} - \sqrt {16}

Ta có:

+) \sqrt {25 - 16} = \sqrt 9 =\sqrt{3^2}= 3.

+) \sqrt {25} - \sqrt {16} = \sqrt{5^2}-\sqrt{4^2}=5 - 4 = 1 .

3>1 \Leftrightarrow \sqrt {25 - 16}>\sqrt {25} - \sqrt {16} .

Vậy\sqrt {25 - 16} > \sqrt {25} - \sqrt {16}

b. Chứng minh rằng: với a > b >0 thì \sqrt a - \sqrt b < \sqrt {a - b}

Bài ra cho a > b > 0 nên \sqrt a ,\sqrt b và \sqrt {a - b} đều xác định và dương.

Ta sẽ so sánh \sqrt a với \sqrt {a - b} + \sqrt b

Theo kết quả bài 26 trang 16 SGK toán 9 tập 1, với hai số dương a-b và b, ta sẽ có:

\sqrt {a - b} + \sqrt b > \sqrt {a - b + b}

Suy ra:

\sqrt {a - b} + \sqrt b > \sqrt a \Leftrightarrow \sqrt {a - b} > \sqrt a - \sqrt b

Vậy \sqrt a - \sqrt b < \sqrt {a - b} với a > b > 0.

Cách khác 1:

Với a > b > 0 ta có \left\{ \begin{array}{l}\sqrt a > \sqrt b \\a - b > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt a - \sqrt b > 0\\\sqrt {a - b} > 0\end{array} \right.

Xét \sqrt a - \sqrt b < \sqrt {a - b} ,

Bình phương hai vế ta được

{\left( {\sqrt a - \sqrt b } \right)^2} < {\left( {\sqrt {a - b} } \right)^2} \Leftrightarrow {\left( {\sqrt a } \right)^2} - 2.\sqrt a .\sqrt b + {\left( {\sqrt b } \right)^2} < a - b

\Leftrightarrow a - 2\sqrt {ab} + b < a - b \Leftrightarrow 2b - 2\sqrt {ab} < 0

\Leftrightarrow 2\sqrt b \left( {\sqrt b - \sqrt a } \right) < 0 luôn đúng vì

\left\{ \begin{array}{l}\sqrt b > 0\\\sqrt b - \sqrt a < 0\,\left( {do\,0 < b < a} \right)\end{array} \right.

Vậy\sqrt a - \sqrt b < \sqrt {a - b} với a > b > 0.

Cách khác 2:

Bài ra cho a > b > 0 nên \sqrt a ,\sqrt b\sqrt {a - b} đều xác định và dương.

Ta sẽ so sánh\sqrt a với \sqrt {a - b} + \sqrt b

Ta có \sqrt {a - b} + \sqrt b là số dương và

{\left( {\sqrt {a - b} + \sqrt b } \right)^2} = a - b + 2\sqrt {b\left( {a - b} \right)} + b = a + 2\sqrt {b\left( {a - b} \right)}

Rõ ràng 2\sqrt {b(a - b)} > 0 nên {\left( {\sqrt {a - b} + \sqrt b } \right)^2} > a (1)

Ta có \sqrt a là số không âm và {\left( {\sqrt a } \right)^2} = a (2)

Từ (1) và (2) suy ra

{\left( {\sqrt {a - b} + \sqrt b } \right)^2} > {\left( {\sqrt a } \right)^2} (3)

Từ (3) theo định lí so sánh các căn bậc hai số học, ta suy ra

\sqrt {{{\left( {\sqrt {a - b} + \sqrt b } \right)}^2}} > \sqrt {{{\left( {\sqrt a } \right)}^2}}

Hay \left| {\sqrt {a - b} + \sqrt b } \right| > \left| {\sqrt a } \right|

Hay \sqrt {a - b} + \sqrt b > \sqrt a

Từ kết quả \sqrt a < \sqrt {a - b} + \sqrt b, ta có \sqrt a - \sqrt b < \sqrt {a - b}

fv5" style="text-align:center">Giải bài tập toán 9 trang 19, 20 tập 1: Luyện tập

fv6">Bài 32 (trang 19 SGK Toán 9 Tập 1)

Tính

a. \sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}

b. \sqrt{1,44.1,21-1,44.0,4}

c. \sqrt{\dfrac{165^{2}-124^{2}}{164}}

d. \sqrt{\dfrac{149^{2}-76^{2}}{457^{2}-384^{2}}}

Gợi ý đáp án

a. \sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}

Ta có:

\sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}=\sqrt{\dfrac{1.16+9}{16}.\dfrac{5.9+4}{9}.\dfrac{1}{100}}

=\sqrt{\dfrac{16+9}{16}.\dfrac{45+4}{9}.\dfrac{1}{100}}

=\sqrt{\dfrac{25}{16}.\dfrac{49}{9}.\dfrac{1}{100}}

=\sqrt{\dfrac{25}{16}}.\sqrt{\dfrac{49}{9}}.\sqrt{\dfrac{1}{100}}

=\dfrac{\sqrt{25}}{\sqrt{16}}.\dfrac{\sqrt{49}}{\sqrt{9}}.\dfrac{\sqrt{1}}{\sqrt{100}}

=\dfrac{\sqrt{5^2}}{\sqrt{4^2}}.\dfrac{\sqrt{7^2}}{\sqrt{3^2}}.\dfrac{1}{\sqrt{10^2}}

=\dfrac{5}{4}.\dfrac{7}{3}.\dfrac{1}{10}=\dfrac{5.7.1}{4.3.10}=\dfrac{35}{120}=\dfrac{7}{24}.

b. \sqrt{1,44.1,21-1,44.0,4}

Ta có:

\sqrt{1,44.1,21-1,44.0,4} = \sqrt{1,44(1,21-0,4)}

=\sqrt{1,44.0,81}

=\sqrt{1,44}.\sqrt{0,81}

=\sqrt{1,2^2}.\sqrt{0,9^2}

=1,2.0,9=1,08.

c. \sqrt{\dfrac{165^{2}-124^{2}}{164}}

Ta có:

\sqrt{\dfrac{165^{2}-124^{2}}{164}}=\sqrt{\dfrac{(165-124)(165+124)}{164}}

=\sqrt{\dfrac{41.289}{41.4}} =\sqrt{\dfrac{289}{4}}

=\dfrac{\sqrt{289}}{\sqrt{4}} =\dfrac{\sqrt{17^2}}{\sqrt{2^2}} =\dfrac{17}{2}.

d. \sqrt{\dfrac{149^{2}-76^{2}}{457^{2}-384^{2}}}

Ta có:

\sqrt{\dfrac{149^{2}-76^{2}}{457^{2}-384^{2}}} =\sqrt{\dfrac{(149-76)(149+76)}{(457-384)(457+384)}}

=\sqrt{\dfrac{73.225}{73.841}} =\sqrt{\dfrac{225}{841}}

=\sqrt {\dfrac{15^2}{29^2}} = \sqrt {{{\left( {\dfrac{{15}}{{29}}} \right)}^2}}=\dfrac{15}{29}.

fv7">Bài 33 (trang 19 SGK Toán 9 Tập 1)

Giải phương trình

a. \sqrt 2 .x - \sqrt {50} = 0

b. \sqrt 3 .x + \sqrt 3 = \sqrt {12} + \sqrt {27}

c. \sqrt 3 .{x^2} - \sqrt {12} = 0

d. \dfrac{x^2}{\sqrt 5 } - \sqrt {20} = 0

Gợi ý đáp án

a. \sqrt 2 .x - \sqrt {50} = 0

\Leftrightarrow \sqrt{2}x=\sqrt{50}

\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}

\Leftrightarrow x =\sqrt{\dfrac{50}{2}}

\Leftrightarrow x= \sqrt{25}

\Leftrightarrow x= \sqrt{5^2}

\Leftrightarrow x=5.

Vậy x=5.

b. \sqrt 3 .x + \sqrt 3 = \sqrt {12} + \sqrt {27}

\Leftrightarrow \sqrt{3}.x = \sqrt{12} + \sqrt{27} - \sqrt{3}

\Leftrightarrow \sqrt{3}.x=\sqrt{4.3}+\sqrt{9.3}- \sqrt{3}

\Leftrightarrow \sqrt{3}.x=\sqrt{4}. \sqrt{3}+\sqrt{9}. \sqrt{3}- \sqrt{3}

\Leftrightarrow \sqrt{3}.x=\sqrt{2^2}. \sqrt{3}+\sqrt{3^2}. \sqrt{3}- \sqrt{3}

\Leftrightarrow \sqrt{3}.x=2 \sqrt{3}+3\sqrt{3}- \sqrt{3}

\Leftrightarrow \sqrt{3}.x=(2+3-1).\sqrt{3}

\Leftrightarrow \sqrt{3}.x=4\sqrt{3}

\Leftrightarrow x=4.

Vậy x=4.

c. \sqrt 3 .{x^2} - \sqrt {12} = 0

\sqrt{3}x^2-\sqrt{12}=0

\Leftrightarrow \sqrt{3}x^2=\sqrt{12}

\Leftrightarrow \sqrt{3}x^2=\sqrt{4.3}

\Leftrightarrow \sqrt{3}x^2=\sqrt{4}.\sqrt 3

\Leftrightarrow x^2=\sqrt{4}

\Leftrightarrow x^2=\sqrt{2^2}

\Leftrightarrow x^2=\sqrt{2^2}

\Leftrightarrow \sqrt{x^2}=\sqrt{2}

\Leftrightarrow |x|= \sqrt 2

\Leftrightarrow x= \pm \sqrt 2.

Vậyx= \pm\sqrt 2.

d. \dfrac{x^2}{\sqrt 5 } - \sqrt {20} = 0

\dfrac{x^{2}}{\sqrt{5}}- \sqrt{20} = 0

\Leftrightarrow \dfrac{x^2}{\sqrt{5}}=\sqrt{20}

\Leftrightarrow x^2=\sqrt{20}.\sqrt{5}

\Leftrightarrow x^2=\sqrt{20.5}

\Leftrightarrow x^2=\sqrt{100}

\Leftrightarrow x^2=\sqrt{10^2}

\Leftrightarrow x^2=10

\Leftrightarrow \sqrt{x^2}=\sqrt {10}

\Leftrightarrow |x|=\sqrt{10}

\Leftrightarrow x=\pm \sqrt{10}.

Vậy x= \pm \sqrt{10}.

fv8">Bài 34 (trang 19 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a. ab^{2}.\sqrt{\dfrac{3}{a^{2}b^{4}}} với a < 0,\ b ≠ 0

b. \sqrt{\dfrac{27(a - 3)^{2}}{48}} với a > 3

c. \sqrt{\dfrac{9+12a+4a^{2}}{b^{2}}}với a ≥ -1,5 và b < 0.

d. (a - b).\sqrt{\dfrac{ab}{(a - b)^{2}}}với a < b < 0

Gợi ý đáp án

a. ab^{2}.\sqrt{\dfrac{3}{a^{2}b^{4}}} với a < 0,\ b ≠ 0

Ta có:

ab^{2}.\sqrt{\dfrac{3}{a^{2}b^{4}}}=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2b^4}} =ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2}.\sqrt{b^4}}

=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2}.\sqrt{(b^2)^2}} =ab^2.\dfrac{\sqrt{3}}{|a|.|b^2|}

=ab^2.\dfrac{\sqrt{3}}{-ab^2}=-\sqrt{3}.

(Vì a < 0 nên |a|=-a và b \ne 0 nên b^2 >0 \Rightarrow |b^2|=b^2) .

b. \sqrt{\dfrac{27(a - 3)^{2}}{48}} với a > 3

Ta có:

\sqrt{\dfrac{27(a - 3)^{2}}{48}}=\sqrt{\dfrac{27}{48}.(a-3)^2} =\sqrt{\dfrac{27}{48}}.\sqrt{(a-3)^2}

=\sqrt{\dfrac{9.3}{16.3}}.\sqrt{(a-3)^2} =\sqrt{\dfrac{9}{16}}.\sqrt{(a-3)^2}

=\sqrt{\dfrac{3^2}{4^2}}.\sqrt{(a-3)^2} =\dfrac{\sqrt {3^2}}{\sqrt {4^2}}.\sqrt{(a-3)^2}

=\dfrac{3}{4}|a-3|=\dfrac{3}{4}(a-3).

( Vì a > 3 nên a-3>0 \Rightarrow |a-3|=a-3)

c. \sqrt{\dfrac{9+12a+4a^{2}}{b^{2}}}với a ≥ -1,5 và b < 0.

Ta có:

\sqrt{\dfrac{9+12a+4a^{2}}{b^{2}}}=\sqrt{\dfrac{3^2+2.3.2a+2^2.a^2}{b^2}}

=\sqrt{\dfrac{3^2+2.3.2a+(2a)^2}{b^2}}=\sqrt{\dfrac{(3+2a)^2}{b^2}}

=\dfrac{\sqrt{(3+2a)^2}}{\sqrt{b^2}}=\dfrac{|3+2a|}{|b|}

a \geq -1,5 \Rightarrow a+1,5>0

\Leftrightarrow 2(a+1,5)>0

\Leftrightarrow 2a+3>0

\Leftrightarrow 3+2a>0

\Rightarrow |3+2a|=3+2a

b<0\Rightarrow |b|=-b

Do đó: \dfrac{|3+2a|}{|b|}=\dfrac{3+2a}{-b} =-\dfrac{3+2a}{b}.

Vậy \sqrt{\dfrac{9+12a+4a^{2}}{b^{2}}}=-\dfrac{3+2a}{b}.

d. (a - b).\sqrt{\dfrac{ab}{(a - b)^{2}}}với a < b < 0

Ta có:

(a - b).\sqrt{\dfrac{ab}{(a - b)^{2}}}=(a-b).\dfrac{\sqrt{ab}}{\sqrt{(a-b)^2}}

=(a-b).\dfrac{\sqrt{ab}}{|a-b|}

=(a-b).\dfrac{\sqrt{ab}}{-(a-b)}=-\sqrt{ab}.

(Vì a < b < 0 nên a-b<0\Rightarrow |a-b|=-(a-b) và ab>0).

fv9">Bài 35 (trang 20 SGK Toán 9 Tập 1)

Tìm x, biết:

a. \sqrt {{{\left( {x - 3} \right)}^2}} = 9

b. \sqrt {4{{\rm{x}}^2} + 4{\rm{x}} + 1} = 6

Gợi ý đáp án

a. \sqrt {{{\left( {x - 3} \right)}^2}} = 9

Ta có:

\sqrt {{{\left( {x - 3} \right)}^2}} = 9 \Leftrightarrow \left| {x - 3} \right| = 9

\Leftrightarrow \left[ \matrix{
x - 3 = 9 \hfill \cr
x - 3 = - 9 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 9 + 3 \hfill \cr
x = - 9 + 3 \hfill \cr} \right.

\Leftrightarrow \left[ \matrix{
x = 12 \hfill \cr
x = - 6 \hfill \cr} \right.

Vậy phương trình đã cho có hai nghiệm: x = 12 và x = -6.

b. \sqrt {4{{\rm{x}}^2} + 4{\rm{x}} + 1} = 6

Ta có:

\sqrt{4x^2+4x+1}=6 \Leftrightarrow \sqrt{2^2x^2+4x+1}=6

\Leftrightarrow \sqrt{(2x)^2+2.2x+1^2}=6

\Leftrightarrow \sqrt{(2x+1)^2}=6

\Leftrightarrow |2x+1| =6

\eqalign{
& \Leftrightarrow \left[ \matrix{
2x + 1 = 6 \hfill \cr
2x + 1 = - 6 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
2x = 6 - 1 \hfill \cr
2x = - 6 - 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
2x = 5 \hfill \cr
2x = - 7 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = \dfrac{5}{2} \hfill \cr
x = \dfrac{-7}{2} \hfill \cr} \right. \cr}

Vậy phương trình có 2 nghiệm x = \dfrac{5}{2} và x=\dfrac{-7}{2}.

fva">Bài 36 (trang 20 SGK Toán 9 Tập 1)

Mỗi khẳng định sau đúng hay sai ? Vì sao ?

a) 0,01 = \sqrt {0,0001} ;

b) - 0,5 = \sqrt { - 0,25} ;

c) \sqrt {39} < 7 và \sqrt {39} > 6;

d)\left( {4 - 13} \right).2{\rm{x}} < \sqrt 3 \left( {4 - \sqrt {13} } \right) \Leftrightarrow 2{\rm{x}} < \sqrt {3} .

Gợi ý đáp án

a) Đúng. Vì \sqrt {0,0001} = \sqrt {0,{{01}^2}} = 0,01

VP=\sqrt{0,0001}=\sqrt{0,01^2}=0,01=VT.

b) Sai.

Vì vế phải không có nghĩa do số âm không có căn bậc hai.

c) Đúng.

Vì: 36 < 39 < 49 \Leftrightarrow \sqrt {36} < \sqrt {39} < \sqrt {49}

\Leftrightarrow \sqrt {{6^2}} < \sqrt {39} < \sqrt {{7^2}}

\Leftrightarrow 6 < \sqrt {39} < 7

Hay \sqrt{39}>6\sqrt{39} < 7.

d) Đúng.

Xét bất phương trình đề cho:

(4-\sqrt{13}).2x<\sqrt 3 .(4-\sqrt{13}) (1)

Ta có:

16>13 \Leftrightarrow \sqrt{16} > \sqrt{13}

\Leftrightarrow \sqrt{4^2}> \sqrt{13}

\Leftrightarrow 4> \sqrt{13}

\Leftrightarrow 4-\sqrt{13}>0

Chia cả hai vế của bất đẳng thức (1) cho số dương (4-\sqrt{13}), ta được:

\dfrac{(4-\sqrt{13}).2x}{(4-\sqrt{13})} <\dfrac{\sqrt 3 .(4-\sqrt{13})}{(4-\sqrt{13})}

\Leftrightarrow 2x < \sqrt 3.

Vậy phép biến đổi tương đương trong câu d là đúng.

fvb">Bài 37 (trang 20 SGK Toán 9 Tập 1)

Đố: Trên lưới ô vuông, mỗi ô vuông cạnh 1cm, cho bốn điểm M,N, P,Q (h.3).

Hãy xác định số đo cạnh, đường chéo và diện tích của tứ giác MNPQ.

Gợi ý đáp án

Nối các điểm ta có tứ giác MNPQ

Tứ giác MNPQ có:

- Các cạnh bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 2cm, chiều rộng 1cm. Do đó theo định lí Py-ta-go, ta có:

MN=NP=PQ=QM=\sqrt{2^{2}+1^{2}}=\sqrt{5} (cm).

Hay MNPQ là hình thoi.

- Các đường chéo bằng nhau và cùng bằng đường chéo của hình chữ nhật có chiều dài 3cm, chiều rộng 1cm nên theo định lý Py-ta-go ta có độ dài đường chéo là:

MP=NQ=\sqrt{3^{2}+1^{2}}=\sqrt{10}(cm).

Như vậy hình thoi MNPQ có hai đường chéo bằng nhau nên MNPQ là hình vuông.

Vậy diện tích hình vuông MNPQ bằng MN^{2}=(\sqrt{5})^{2}=5(cm^2).

fv0" style="text-align:center">Lý thuyết Liên hệ giữa phép chia và phép khai phương

1. Định lí. Với số a không âm và số b dương ta có

1. Định lí

Với số a không âm và số b dương ta có: \sqrt{\dfrac{a}{b}} = \dfrac{\sqrt{a}}{\sqrt{b}}.

2. Quy tắc khai phương một thương

Muốn khai phương một thương \dfrac{a}{b}, trong đó a không âm, b dương, ta có thể khai phương lần lượt a và b rồi lấy kết quả thứ nhất chia cho kết quả thứ 2.

3. Quy tắc chia các căn bậc hai

Muốn chia các căn bậc hai của số a không âm cho căn bậc hai của số b dương ta có thể chia a cho cho b rồi khai phương kết quả đó.

Chú ý: Một cách tổng quát, với biểu thức A không âm và biểu thức B dương ta có \sqrt{\dfrac{A}{B}}=\dfrac{\sqrt A}{\sqrt B}

4. Các dạng toán cơ bản

Dạng 1: Tính giá trị biểu thức

Sử dụng: Với biểu thức A không âm và biểu thức B dương ta có \sqrt{\dfrac{A}{B}}=\dfrac{\sqrt A}{\sqrt B}

Dạng 2: Rút gọn biểu thức

Sử dụng: Với biểu thức A không âm và biểu thức B dương ta có

Liên kết tải về

pdf Giải Toán 9 Bài 4: Liên hệ giữa phép chia và phép khai phương

Chủ đề liên quan

Học tập

Lớp 9

Giải Toán 9

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Có thể bạn quan tâm

Được tải nhiều nhất

Bài viết mới nhất

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK