Xin giúp với hepppppp
Giải thích các bước giải:
a.Vì $AB$ là đường kính của $(O)\to\widehat{ACB}=90^o\to \Delta ABC$ vuông tại $C$
$\to BC=\sqrt{AB^2-AC^2}=8$
$\to \tan\widehat{CAB}=\dfrac{BC}{CA}=\dfrac34$
$\to\widehat{CAB}=\arctan\dfrac34$
b.Vì $MB, CM$ là tiếp tuyến của $(O)\to MB\perp OB, MC\perp OC, MO\perp BC$
$\to \widehat{MCO}=\widehat{MBO}=90^o$
$\to M, B, O, C\in$ đường tròn đường kính $OM$
c.Xét $\Delta IAC,\Delta IBD$ có:
$\widehat{ICA}=\widehat{ACB}=\widehat{ADB}=\widehat{IDB}$
$\widehat{AIC}=\widehat{BID}$
$\to\Delta IAC\sim\Delta IBD(g.g)$
$\to \dfrac{IA}{IB}=\dfrac{IC}{ID}$
$\to IA\cdot ID=IB\cdot IC=IC^2=IO\cdot IM$
d.Gọi $E$ là trung điểm $IB$
$\to KE, OE$ là đường trung bình $\Delta IBM,\Delta IAB$
$\to KE//MB, OE//AI$
Mà $BM\perp OB\to KE\perp OB$
Do $OM\perp CB\to BE\perp KO$
$\to E$ là trực tâm $\Delta KOB$
$\to OE\perp KB$
$\to AI\perp BK$
$\to AD\perp BK$
Mà $\widehat{ADB}=90^o\to AD\perp BD$
$\to B, D, K$ thẳng hàng
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!
Lớp 9 - Là năm cuối ở cấp trung học cơ sở, chúng ta sắp phải bước vào một kỳ thi căng thẳng và sắp chia tay bạn bè, thầy cô. Áp lực từ kỳ vọng của phụ huynh và tương lai lên cấp 3 thật là lớn, nhưng hãy tin vào bản thân và giữ vững sự tự tin!
Copyright © 2021 HOCTAPSGK