Cho hệ ba phương trình bậc nhất ba ẩn sau
.
a) Giả sử (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình trên. Chứng minh rằng cũng là một nghiệm của hệ.
b) Sử dụng kết quả của câu a) chứng minh rằng, nếu hệ phương trình bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.
a) Vì (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình nên:
và
Mặt khác do (x0; y0; z0) và (x1; y1; z1) phân biệt nên cũng đôi một phân biệt với (x0; y0; z0) và (x1; y1; z1).
Do đó cũng là một nghiệm của hệ.
b) Xét hệ phương trình bậc nhất ba ẩn .
có (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình này.
Giả sử hệ chỉ có n nghiệm đôi một phân biệt (x0; y0; z0), (x1; y1; z1), ..., (xn; yn; zn).
Ta chọn ra hai nghiệm (xi; yi; zi) và (xj; yj; zj) thoả mãn xi và xj là hai số nhỏ nhất trong tập hợp A = {x0; x1; ...; xn}.
Khi đó, áp dụng câu a) ta được cũng là một nghiệm của hệ.
Mặt khác khác xi, xj và < max{xi, xj} nên không trùng với phần tử nào trong tập hợp A. Do đó hệ đã cho có n + 1 nghiệm phân biệt (vô lí).
Vậy hệ này có vô số nghiệm.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK