Đáp án:
Giải thích các bước
Xét ΔPIM và ΔPIN có
PM=PN(do ΔMPN cân tại B)
MPIˆ=NPIˆMPI^=NPI^(do PI là tia phân giác của MPNˆMPN^)
PI là cạnh chung
Do đó: ΔPIM=ΔPIN(c-g-c)
b)Ta có: ΔPIM=ΔPIN(cmt)
⇒MI=IN(hai cạnh tương ứng)
Xét ΔIEM vuông tại E và ΔIFN vuông tại F có
MI=IN(cmt)
EMIˆ=FNIˆEMI^=FNI^(hai góc ở đáy của ΔPMN cân tại P)
Do đó: ΔIEM=ΔIFN(cạnh huyền-góc nhọn)
⇒IE=IF(hai cạnh tương ứng)
c) Xét ΔIEK vuông tại E và ΔIFH vuông tại F có
EI=IF(cmt)
EIKˆ=FIHˆEIK^=FIH^(hai góc đối đỉnh)
Do đó: ΔIEK=ΔIFH(cạnh góc vuông-góc nhọn kề)
⇒EK=FH(hai cạnh tương ứng)(1)
Ta có: EK=EM+MK(do E,M,K thẳng hàng)(2)
FH=FN+NH(do F,N,H thẳng hàng)(3)
Từ (1) , (2) và (3) suy ra EM+MK=FN+NH
mà EM=FN(ΔIEM=ΔIFN)
nên MK=NH
Ta có: PK=PM+MK(do P,M,K thẳng hàng)
PH=PN+NH(do P,N,H thẳng hàng)
mà PM=PN(do ΔPMN cân tại P)
và MK=NH(cmt)
nên PK=PH
Xét ΔPKH có PK=PH(cmt)
nên ΔPKH cân tại P(đ/n tam giác cân)
d) Xét ΔPEI vuông tại E và ΔPFI vuông tại F có
PI là cạnh chung
EPIˆ=FPIˆEPI^=FPI^(PI là tia phân giác của EPFˆEPF^)
Do đó: ΔPEI=ΔPFI(cạnh huyền-góc nhọn)
⇒PE=PF(hai cạnh tương ứng)
Xét ΔPEF có PE=PF(cmt)
nên ΔPEF cân tại P(định nghĩa tam giác cân)
⇒PEFˆ=1800−Pˆ2PEF^=1800−P^2(số đo một góc ở đáy của ΔPEF cân tại P)(4)
Ta có: ΔPKH cân tại P(cmt)
⇒PKHˆ=1800−Pˆ2PKH^=1800−P^2(số đo một góc ở đáy của ΔPKH cân tại P)(5)
Từ (4) và (5) suy ra PEFˆ=PKHˆPEF^=PKH^
mà PEFˆPEF^ và PKHˆPKH^ là hai góc ở vị trí đồng vị
nên EF//HK(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)
giải:
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Xem thêm tại https://loigiaisgk.com/cau-hoi or https://giaibtsgk.com/cau-hoi
Copyright © 2021 HOCTAPSGK