Trang chủ Toán Học Lớp 9 Cho $x;y;z\ge 0$ và $(x+y)(y+z)(z+x)\ne 0$. CMR: $\\ P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}+\dfrac{36(xy+yz+xz)}{(x+y+z)^2}\ge 10$

Cho $x;y;z\ge 0$ và $(x+y)(y+z)(z+x)\ne 0$. CMR: $\\ P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}+\dfrac{36(xy+yz+xz)}{(x+y+z)^2}\ge 10$

Câu hỏi :

Cho $x;y;z\ge 0$ và $(x+y)(y+z)(z+x)\ne 0$. CMR: $\\ P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}+\dfrac{36(xy+yz+xz)}{(x+y+z)^2}\ge 10$

Lời giải 1 :

Đáp án:

Dễ nhận thấy : trong các số `x,y,z` không có `2` số nào đồng thời bằng `0`

 Nhận `2` vế của ` BĐT ` với `xy + yz + zx > 0` , ta có : 

`∑xy . (x/(y + z) + y/(z + x) + z/(x + y) + (36∑xy)/(∑x)^2) ≥ 10∑xy`

biến đổi và đưa về như sau : 

`∑x^2 + xyz(1/(x + y) + 1/(y + z) + 1/(z + x)) + (36(∑xy)^2)/(∑x)^2 ≥ 10∑xy (**)`

`<=> (∑x)^2 + xyz(1/(x + y) + 1/(y + z) + 1/(z + x)) + (36(∑xy)^2)/(∑x)^2 ≥ 12∑xy`

Áp dụng BĐT ` Cô si ` ta có : 

`(∑x)^2 + (36(∑xy)^2)/(∑x)^2  ≥ 2\sqrt{(∑x)^2  . (36(∑xy)^2)/(∑x)^2 } = 12∑xy (1)`

đồng thời `xyz(1/(x + y) + 1/(y + z) + 1/(z + x)) ≥ 0 (2)`

Đem `(1) + (2) -> đpcm`

Dấu "=" xảy ra `<=> (x,y,z)` là hoán vị của `(0, k , k(\sqrt{3} + 2)) (k > 0)`

Giải thích các bước giải:

Thảo luận

-- ờ anh quân mất để anh bổ sung vô
-- rồi nha e
-- nhìn cái bài ''khinh khủng'' :v
-- Tại sao \(\sum xy=xy+yz+zx\) ạ
-- nó kí hiệu thế đó cậu
-- ko cần bt vì sao đâu em cứ hiểu là mẫy chỗ xích ma đó là `=` như dậy , coi như thay cái đó = kí hiệu đó đi măc công sửa :)
-- Có ai chỉ tôi cái $\sum$ đối xứng và $\sum$ hoán vị hăm
-- Nhìn cái bài kiểu :)))

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK