Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)
Định nghĩa:
Cho hàm số \(f(x)\) xác định trên K.
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)
Định lý 1:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.
Định lý 2:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)
Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)
Định lí 3:
Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
Định lí 1:
Cơ sở của phương pháp đổi biến số là định lý sau: Cho hàm số \(u = u(x)\) có đạo hàm và liên tục trên K và hàm số \(y = f({\rm{u)}}\) liên tục sao cho \(f[u(x)]\) xác định trên K. Khi đó nếu \(F\) là một nguyên hàm của \(f\), tức là \(\int {f(u)du = F(u) + C}\) thì \(\int {f[u(x){\rm{]dx = F[u(x)] + C}}}.\)
Hệ quả:
Với \(u = ax + b\,(a \ne 0),\) ta có:
\(\int {f(ax + b)dx} = \frac{1}{a}F(ax + b) + C\)
Định lí 2:
Nếu hai hàm số \(u=u(x)\) và \(v=v(x)\) có đạo hàm và liên tục trên K thì:
\(\int {u(x)v'(x)dx} = u(x)v(x) - \int {u'(x)v(x)dx}\)
Một số dạng thường gặp:
Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)
Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)
Áp dụng công thức nguyên hàm cơ bản, tính nguyên hàm sau:
a) \(I = \int {{x^8}}dx\)
b) \(I=\int \left ( x^2+2x \right )^2dx\)
c) \(I=\int \frac{1}{x^5}dx\)
d) \(I=\int\frac{1}{2x}dx\)
a) \(I = \int {{x^8}dx = \frac{1}{9}{x^9} + C}\)
b) \(I = \int {{{\left( {{x^2} + 2x} \right)}^2}dx = \int {\left( {{x^4} + 4{x^3} + 4{x^2}} \right)dx = \frac{1}{5}{x^5} + {x^4} + \frac{4}{3}{x^3} + C} }\)
c) \(I = \int {\frac{{dx}}{{{x^5}}} = \int {{x^{ - 5}}dx = \frac{1}{{ - 5 + 1}}{x^{ - 5 + 1}} + C = } } - \frac{1}{4}{x^{ - 4}} + C\)
d) \(I = \int {\frac{{dx}}{{2x}}} = \frac{1}{2}\int {\frac{{dx}}{x} = \frac{1}{2}\ln \left| x \right| + C}\)
Dùng phương pháp đổi biến số tính các nguyên hàm sau:
a) \(I = \int {\sqrt {{x^{2004}} + 1} .{x^{2003}}dx}\)
b) \(I = \int {{e^{{e^x} + x}}dx}\)
c) \(I = \int {{e^{2{x^2} + \ln {\rm{x}}}}dx}\)
d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)
e) \(I=\int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx}\)
a) Đặt: \(t = {x^{2004}} + 1 \Rightarrow dt = 2004{x^{2003}}dx \Rightarrow {x^{2003}}dx = \frac{1}{{2004}}dt.\)
Từ đó ta được:
\(I = \frac{1}{{2004}}\int {\sqrt t dt} = \frac{1}{{2004}}\int {{t^{\frac{1}{2}}}dt} = \frac{1}{{2004}}.\frac{2}{3}{t^{\frac{3}{2}}} + C\)
\(= \frac{1}{{3006}}\sqrt {{t^3}} + C = \frac{1}{{3006}}\sqrt {{{\left( {{x^{2004}} + 1} \right)}^3}} + C\)
b) Ta có: \({e^{{e^x} + x}} = {e^{{e^x}}}.{e^x}\)
Đặt: \({e^x} = t \Rightarrow {e^x}dx = dt\)
Từ đó ta được:
\(I = \int {{e^t}dt} = \int {{e^t}dt} = {e^t} + C = {e^{{e^x}}} + C\)
c) Ta có: \(M = \int {{e^{2{x^2}}}.{e^{\ln x}}dx = } \int {{e^{2{x^2}}}.xdx}\)
Đặt: \(2{x^2} = t \Rightarrow 4xdx = dt \Rightarrow xdx = \frac{{dt}}{4}\)
Ta được: \(M = \int {{e^t}\frac{{dt}}{4} = \frac{1}{4}{e^t} + C = \frac{1}{4}{e^{2{x^2}}}} + C.\)
d) \(I = \int {\frac{x}{{\sqrt[{10}]{{x + 1}}}}} dx\)
Đặt: \(\sqrt[{10}]{{x + 1}} = t \Rightarrow x + 1 = {t^{10}} \Rightarrow dx = 10{t^9}dt\)
Ta được:
\(\begin{array}{l} N = \int {\frac{{{t^{10}} - 1}}{t}.10{t^9}dt} = 10\int {\left( {{t^{10}} - 1} \right){t^8}dt} \\ = 10\int {\left( {{t^{18}} - {t^8}} \right)dt} = \frac{{10}}{{19}}{t^{19}} - \frac{{10}}{9}{t^9} + C \end{array}\)
\(\, = \frac{{10}}{{19}}\sqrt[{10}]{{{{\left( {x + + 1} \right)}^{19}}}} - \frac{{10}}{9}\sqrt[{10}]{{{{\left( {x + 1} \right)}^9}}} + C\)
e) Ta có:\(I = \int {\frac{{\sin x.{{\cos }^3}x}}{{1 + {{\cos }^2}x}}dx = \frac{1}{2}\int {\frac{{2\sin x\cos x.{{\cos }^2}x}}{{1 + {{\cos }^2}x}}} } dx = \frac{1}{2}\int {\frac{{{{\cos }^2}x}}{{1 + {{\cos }^2}x}}.\sin 2xdx}\)
Đặt: \(1 + {\cos ^2}x = t \Rightarrow \sin 2xdx = - dt\)
\(\Rightarrow S = - \frac{1}{2}\int {\frac{{t - 1}}{t}dt} = - \frac{1}{2}\int {dt + \frac{1}{2}\int {\frac{{dt}}{t}} = - \frac{1}{2}t + \frac{1}{2}\ln \left| t \right| + C}\)
Dùng phương pháp nguyên hàm từng phần tính các nguyên hàm sau:
a) \(I = \int {x{\rm{sin2}}xdx}\)
b) \(I = \int {{x^2}{e^{2x}}dx}\)
c) \(I = \int {\left( {2{x^2} + x + 1} \right){e^x}dx}\)
d) \(I = \int {x{{\cos }^2}2xdx}\)
a) Đặt \(\left\{ \begin{array}{l} u = x\\ dv = \sin 2xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = - \frac{1}{2}\cos 2x \end{array} \right.\)
\(\Rightarrow I = - \frac{1}{2}x\cos 2x + \frac{1}{2}\int {\cos 2xdx} = - \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C\)
b) Đặt: \(\left\{ \begin{array}{l} u = {x^2}\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 2xdx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)\(\Rightarrow I = \frac{1}{2}{x^2}{e^{2x}} - \int {x{e^{2x}}dx} = \frac{1}{2}{x^2}{e^{2x}} - {I_1}\)
Tính \({I_1} = \int {x{e^{2x}}dx}\)
Đặt: \(\left\{ \begin{array}{l} u = x\\ dv = {e^{2x}}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dx\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)
\(\Rightarrow {I_1} = \frac{1}{2}x{e^{2x}} - \frac{1}{2}\int {{e^{2x}}dx} = \frac{1}{2}x{e^{2x}} - \frac{1}{4}{e^{2x}} + C\)
Vậy: \(I = \frac{1}{2}{x^2}{e^{2x}} - \frac{1}{2}x{e^{2x}} + \frac{1}{4}{e^{2x}} + C = \frac{{\left( {2{x^2} - 2x + 1} \right){e^{2x}}}}{4} + C\)
c) Đặt: \(\left\{ \begin{array}{l} u = 2{x^2} + x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \left( {4x + 1} \right)dx\\ v = {e^x} \end{array} \right.\)
\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} - \int {\left( {4x + 1} \right){e^x}dx}\)
Tính: \({I_1} = \int {\left( {4x + 1} \right){e^x}dx}\)
Đặt: \(\left\{ \begin{array}{l} u = 4x + 1\\ dv = {e^x}dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = 4dx\\ v = {e^x} \end{array} \right.\)
\(\Rightarrow {I_1} = \left( {4x + 1} \right){e^x} - 4\int {{e^x}dx} = \left( {4x + 1} \right){e^x} - 4{e^x} + C = \left( {4x - 3} \right){e^x} + C\)
\(\Rightarrow I = \left( {2{x^2} + x + 1} \right){e^x} - \left( {4x - 3} \right){e^x} + C = \left( {2{x^2} - 3x + 4} \right){e^x} + C\)
d)
\(\begin{array}{l} I = \int {x{{\cos }^2}2xdx} = \int {x.\frac{{1 + \cos 4x}}{2}} dx\\ = \frac{1}{2}\int {xdx} + \int {\frac{1}{2}x\cos 4xdx} = \frac{1}{4}{x^2} + {I_1} \end{array}\)
Tính \({I_1} = \int {\frac{1}{2}x\cos 4xdx}\)
Đặt: \(\left\{ \begin{array}{l} u = \frac{1}{2}x\\ dv = \cos 4xdx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \frac{1}{2}dx\\ v = \frac{1}{4}\sin 4x \end{array} \right.\)
\(\Rightarrow {I_1} = \frac{1}{8}x\sin 4x - \frac{1}{8}\int {\sin 4xdx} = \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)
Vậy: \(I = \frac{1}{4}{x^2} + \frac{1}{8}x\sin 4x + \frac{1}{{32}}\cos 4x + C\)
Thông qua bài học các em sẽ nắm được khái niệm, các tính chất của nguyên hàm. Bên cạnh đó bài học còn giới thiệu đến các em công thức tìm nguyên hàm của một số hàm số cơ bản, các phương pháp tìm nguyên hàm của một hàm số là phương pháp đổi biến số và phương pháp nguyên hàm từng phần.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 3 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Cho F(x) là một nguyên hàm của \(f(x) = {e^{3x}}\) thỏa mãn F(0) = 1. Mệnh đề nào sau đây đúng?
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 3 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
Bài tập 3.13 trang 165 SBT Toán 12
Bài tập 3.14 trang 166 SBT Toán 12
Bài tập 3.15 trang 166 SBT Toán 12
Bài tập 1 trang 141 SGK Toán 12 NC
Bài tập 2 trang 141 SGK Toán 12 NC
Bài tập 3 trang 141 SGK Toán 12 NC
Bài tập 4 trang 141 SGK Toán 12 NC
Bài tập 5 trang 145 SGK Toán 12 NC
Bài tập 6 trang 145 SGK Toán 12 NC
Bài tập 7 trang 145 SGK Toán 12 NC
Bài tập 8 trang 145 SGK Toán 12 NC
Bài tập 9 trang 146 SGK Toán 12 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK