1.1. Phương trình bậc nhất với một hàm số lượng giác
1.2. Phương trình bậc hai đối với sinx, cosx, tanx, cotx
1.3. Phương trình bậc nhất đối với sinx và cosx
3. Luyện tập bài 3 chương 1 giải tích 11
3.1 Trắc nghiệm về phương trình lượng giác thường gặp
3.2 Bài tập SGK và Nâng Cao về phương trình lượng giác thường gặp
Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng \(at + b = 0\) trong đó a,b là các hằng số \(\left( {a \ne 0} \right)\)và t là một trong các hàm số lượng giác.
Ví dụ: \(2\sin x - 1 = 0\,;\,\,\,c{\rm{os}}2x + \frac{1}{2} = 0;\,\,\,3\tan x - 1 = 0;\,\,\sqrt 3 \cot x + 1 = 0\)
b) Phương pháp: Đưa về phương trình lượng giác cơ bản.
\(\begin{array}{l}a{\sin ^2}x + b\sin x + c = 0\\a{\cos ^2}x + b\cos x + c = 0\\a{\tan ^2}x + b\tan x + c = 0\\a{\cot ^2}x + b\cot x + c = 0\end{array}\)
Đặt:
\(t = \sin x{\rm{ ( - 1}} \le {\rm{t}} \le {\rm{1)}}\)
\(\begin{array}{l}t = \cos x{\rm{ ( - 1}} \le {\rm{t}} \le {\rm{1)}}\\t = \tan x\\t = \cot x\end{array}\)
\(a\sin x + b\cos x = c{\rm{ (1)}}\)
Điều kiện có nghiệm: \({a^2} + {b^2} \ge {c^2}\)
\(\left( 1 \right) \Leftrightarrow \frac{a}{{\sqrt {{a^2} + {b^2}} }}\sin x + \frac{b}{{\sqrt {{a^2} + {b^2}} }}\cos x = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
Vì \({\left( {\frac{a}{{\sqrt {{a^2} + {b^2}} }}} \right)^2} + {\left( {\frac{b}{{\sqrt {{a^2} + {b^2}} }}} \right)^2} = 1\) nên ta đặt \(\left\{ {\begin{array}{*{20}{c}}{\sin \varphi = \frac{a}{{\sqrt {{a^2} + {b^2}} }}}\\{\cos \varphi = \frac{b}{{\sqrt {{a^2} + {b^2}} }}}\end{array}} \right.\)
Phương trình trở thành:
\(\sin x\sin \varphi + \cos x\cos \varphi = \frac{c}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \cos \left( {x - \varphi } \right) = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
Đặt \(\cos \alpha = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\) ta được phương trình lượng giác cơ bản.
Hoàn toàn tương tự ta cũng có thể đặt \(\left\{ \begin{array}{l}\cos \varphi = \frac{a}{{\sqrt {{a^2} + {b^2}} }}\\\sin \varphi = \frac{b}{{\sqrt {{a^2} + {b^2}} }}\end{array} \right.\)
Khi đó phương trình trở thành: \({\mathop{\rm sinxcos}\nolimits} \varphi + cosxsin\varphi = \frac{c}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \sin \left( {x + \varphi } \right) = \frac{c}{{\sqrt {{a^2} + {b^2}} }}\)
· Xét \(\cos \frac{x}{2} = 0 \Leftrightarrow x = \pi + k2\pi ,{\rm{ k}} \in \mathbb{Z}\) có là nghiệm của (1) không
· Xét \(\cos \frac{x}{2} \ne 0 \Leftrightarrow x \ne \pi + k2\pi ,k \in \mathbb{Z}\)
Đặt \(t = \tan \frac{x}{2}\). Khi đó \(\sin x = \frac{{2t}}{{1 + {t^2}}}\) và \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}}\)
Phương trình trở thành:
\(a.\frac{{2t}}{{1 + {t^2}}} + b.\frac{{1 - {t^2}}}{{1 + {t^2}}} = c \Leftrightarrow \left( {b + c} \right){t^2} - 2at + c - b = 0{\rm{ (2)}}\)
Giải (2) theo t, tìm được t thay vào \(t = \tan \frac{x}{2}\) suy ra x
Nếu \(a \ne 0\) chia 2 vế cho a rồi ta đặt \(\tan \alpha = \frac{b}{a}\) \(\left( { - \frac{\pi }{2} < \alpha < \frac{\pi }{2}} \right)\)
Phương trình trở thành: \(\sin x + \frac{{\sin \alpha }}{{c{\rm{os}}\alpha }}\cos x = \frac{c}{a}\)
\( \Leftrightarrow c{\rm{os}}\alpha \sin x + \sin \alpha \cos x = \frac{c}{a}c{\rm{os}}\alpha \Leftrightarrow \sin (x + \alpha ) = \frac{c}{a}c{\rm{os}}\alpha \)
Đặt \(\sin \varphi = \frac{c}{a}\cos \alpha \) ta được phương trình lượng giác cơ bản \(\sin (x + \alpha ) = \sin \varphi \).
Giải các phương trình sau:
a) \(2\sin x - 1 = 0\,.\)
b) \(c{\rm{os}}2x + \frac{1}{2} = 0.\)
c) \(3\tan x - 1 = 0.\)
d) \(\sqrt 3 \cot x + 1 = 0.\)
e) \(2\cos x - \sin 2x = 0\)
a) \(2\sin x - 1 = 0\, \Leftrightarrow \sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(c{\rm{os}}2x + \frac{1}{2} = 0 \Leftrightarrow c{\rm{os}}2x = \frac{{ - 1}}{2} \Leftrightarrow c{\rm{os}}2x = \cos \frac{{2\pi }}{3}\)
\( \Leftrightarrow 2x = \pm \frac{{2\pi }}{3} + k2\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \pm \frac{\pi }{3} + k\pi \left( {k \in \mathbb{Z}} \right)\)
c) \(3\tan x - 1 = 0 \Leftrightarrow \tan x = \frac{1}{3} \Leftrightarrow x = \arctan \frac{1}{3} + k\pi \left( {k \in \mathbb{C}} \right)\)
d) \(\sqrt 3 \cot x + 1 = 0 \Leftrightarrow \cot x = \frac{{ - 1}}{{\sqrt 3 }} \Leftrightarrow \cot x = \cot \frac{{2\pi }}{3} \Leftrightarrow x = \frac{{2\pi }}{3} + k\pi \left( {k \in \mathbb{Z}} \right)\)
e) \(\cos x - \sin 2x = 0 \Leftrightarrow \cos x - 2\sin x\cos x = 0 \Leftrightarrow \cos x\left( {1 - 2\sin x} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\1 - 2\sin x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = \frac{\pi }{6} + l\pi \\x = \frac{{5\pi }}{6} + l\pi \end{array} \right.\left( {k,l \in \mathbb{Z}} \right)\)
Giải các phương trình sau:
a) \(2{\sin ^2}x + \sin x - 3 = 0\)
b) \(co{s^2}x + 3cosx - 1 = 0\)
c) \(3\sin {2^2}x + 7\cos 2x - 3 = 0\)
d) \(\frac{1}{{{{\cos }^2}x}} - \left( {1 + \sqrt 3 } \right)\tan x - 1 + \sqrt 3 = 0\)
a) \(2{\sin ^2}x + \sin x - 3 = 0(1)\)
Đặt \(t = \sin x\), điều kiện \(\left| t \right| \le 1\). Phương trình (1) trở thành:
\(2{t^2} + t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\;\left( {nhan} \right)\\t = \frac{3}{2}\;\left( {loai} \right)\end{array} \right.\)
Với t=1, ta được \(\sin x = 1 \Leftrightarrow x = k2\pi \left( {k \in \mathbb{Z}} \right)\)
b) \(co{s^2}x + 3cosx - 1 = 0\left( 2 \right)\)
Đặt \(t = c{\rm{os}}x\), điều kiện \(\left| t \right| \le 1\). Phương trình (2) trở thành:
\({t^2} + 3t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 3 + \sqrt {13} }}{2}\left( {nhan} \right)\\t = \frac{{ - 3 - \sqrt {13} }}{2}\left( {loai} \right)\end{array} \right.\)
Với \(t = \frac{{ - 3 + \sqrt {13} }}{2}\) ta được \(c{\rm{os}}x = \frac{{ - 3 + \sqrt {13} }}{2} \Leftrightarrow x = \pm \arccos \frac{{ - 3 + \sqrt {13} }}{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
c) \(3{\sin ^2}2x + 7\cos 2x - 3 = 0 \Leftrightarrow 3\left( {1 - {{\cos }^2}2x} \right) + 7\cos 2x - 3 = 0\)
\(\begin{array}{l} \Leftrightarrow 3{\cos ^2}2x - 7\cos 2x = 0 \Leftrightarrow \cos 2x\left( {3\cos 2x - 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\3\cos 2x - 7 = 0\end{array} \right.\end{array}\)
*) Giải phương trình:\(\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2},\left( {k \in \mathbb{Z}} \right)\)
*) Giải phương trình: \(3\cos 2x - 7 = 0 \Leftrightarrow \cos 2x = \frac{7}{3}\)
Vì \(\frac{7}{3} > 1\) nên phương trình \(3\cos 2x - 7 = 0\) vô nghiệm.
Kết luận: vậy nghiệm của phương trình đã cho là \(x = \frac{\pi }{4} + k\frac{\pi }{2},\left( {k \in \mathbb{Z}} \right)\)
d) \(\frac{1}{{{{\cos }^2}x}} - \left( {1 + \sqrt 3 } \right)\tan x - 1 + \sqrt 3 = 0\)
Điều kiện: \(\cos x \ne 0\) (*)
(3)\( \Leftrightarrow 1 + {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x - 1 + \sqrt 3 = 0\)\( \Leftrightarrow {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x + \sqrt 3 = 0\)
Đặt \(t = \tan x\)
Khi đó phương trình trở thành: \({t^2} - \left( {1 + \sqrt 3 } \right)t - \sqrt 3 = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = \sqrt 3 }\end{array}} \right.\)
+ Với \(t = 1 \Leftrightarrow \tan x = 1\)\( \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)
+ Với \(t = \sqrt 3 \Leftrightarrow \tan x = \sqrt 3 \)\( \Leftrightarrow x = \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\)
So sánh với điều kiện (*) suy ra nghiệm của phương trình là: \(x = \frac{\pi }{4} + k\pi \),
\(x = \frac{\pi }{3} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\)
Giải các phương trình sau:
a) \(\sqrt 2 \sin 3x + \sqrt 6 \cos 3x = 2\)
b) \(\left( {2 + \sqrt 3 } \right)\sin x - \cos x = 2 + \sqrt 3 \)
c) \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\)
a) \(\sqrt 2 \sin 3x + \sqrt 6 \cos 3x = 2(1)\)
(1)\( \Leftrightarrow \sin 3x + \sqrt 3 \cos 3x = \sqrt 2 \)\( \Leftrightarrow \sin 3x + \tan \frac{\pi }{3}\cos 3x = \sqrt 2 \)
\( \Leftrightarrow \sin 3x\cos \frac{\pi }{3} + \sin \frac{\pi }{3}\cos 3x = \sqrt 2 \cos \frac{\pi }{3} \Leftrightarrow \sin \left( {3x + \frac{\pi }{3}} \right) = \frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{3x + \frac{\pi }{3} = \frac{{3\pi }}{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = - \frac{\pi }{{12}} + k2\pi }\\{3x = \frac{{5\pi }}{{12}} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{36}} + \frac{{k2\pi }}{3}}\\{x = \frac{{5\pi }}{{36}} + \frac{{k2\pi }}{3}}\end{array}} \right.,k \in \mathbb{Z}\)
Vậy nghiệm của (1) là \(x = - \frac{\pi }{{36}} + \frac{{k2\pi }}{3}\), \(x = \frac{{5\pi }}{{36}} + \frac{{k2\pi }}{3}\) \(\left( {k \in \mathbb{Z}} \right)\)
b) \(\left( {2 + \sqrt 3 } \right)\sin x - \cos x = 2 + \sqrt 3 \) (2)
Xét \(\cos \frac{x}{2} = 0 \Leftrightarrow x = \pi + k2\pi \) không là nghiệm của phương trình (2)
Xét \(\cos \frac{x}{2} \ne 0\)
Đặt \(t = \tan \frac{x}{2}\). Khi đó \(\sin x = \frac{{2t}}{{1 + {t^2}}}\) và \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}}\)
Phương trình (2) trở thành: \(\left( {2 + \sqrt 3 } \right)\frac{{2t}}{{1 + {t^2}}} - \frac{{1 - {t^2}}}{{1 + {t^2}}} = 2 + \sqrt 3 \)
\(\begin{array}{l} \Leftrightarrow \left( {2 + \sqrt 3 } \right)2t - 1 + {t^2} = \left( {2 + \sqrt 3 } \right)\left( {1 + {t^2}} \right)\\ \Leftrightarrow \left( {1 + \sqrt 3 } \right){t^2} - 2\left( {2 + \sqrt 3 } \right)t + 3 + \sqrt 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = \sqrt 3 }\end{array}} \right.\end{array}\)
+ Với \(t = 1 \Leftrightarrow \tan \frac{x}{2} = 1\)\( \Leftrightarrow \frac{x}{2} = \frac{\pi }{4} + k\pi \Leftrightarrow x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)
+ Với\(t = \sqrt 3 \Leftrightarrow \tan \frac{x}{2} = \sqrt 3 \)\( \Leftrightarrow \frac{x}{2} = \frac{\pi }{3} + k\pi \Leftrightarrow x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\)
Vậy nghiệm của (2) là \(x = \frac{\pi }{2} + k2\pi \), \(x = \frac{{2\pi }}{3} + k2\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
c) \(2\sqrt 2 \left( {\sin x + \cos x} \right)\cos x = 3 + \cos 2x\) (3)
(3)\( \Leftrightarrow 2\sqrt 2 \sin x\cos x + 2\sqrt 2 {\cos ^2}x = 3 + \cos 2x\)
\( \Leftrightarrow \sqrt 2 \sin 2x + \sqrt 2 \left( {1 + \cos 2x} \right) = 3 + \cos 2x\)
\( \Leftrightarrow \sqrt 2 \sin 2x + \left( {\sqrt 2 - 1} \right)\cos 2x = 3 - \sqrt 2 \)
Điều kiện có nghiệm của phương trình: \({a^2} + {b^2} \ge {c^2}\)
Khi đó: \(2 + {\left( {\sqrt 2 - 1} \right)^2} \ge {\left( {3 - \sqrt 2 } \right)^2} \Leftrightarrow 5 - 2\sqrt 2 \ge 11 - 6\sqrt 2 \) (không thỏa)
Vậy phương trình đã cho vô nghiệm.
Trong phạm vi bài học HOCTAP247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về một số phương trình lượng giác thường gặp. Đây là một dạng toán nền tảng không chỉ trong phạm vi khảo sát hàm số lượng giác mà còn được ứng dụng trong việc giải phương trình lượng giác, sự đơn điệu của hàm số lượng giác,....các em cần tìm hiểu thêm.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 1 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 1 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 31 trang 42 SGK Toán 11 NC
Bài tập 32 trang 42 SGK Toán 11 NC
Bài tập 33 trang 42 SGK Toán 11 NC
Bài tập 34 trang 42 SGK Toán 11 NC
Bài tập 35 trang 42 SGK Toán 11 NC
Bài tập 36 trang 42 SGK Toán 11 NC
Bài tập 37 trang 46 SGK Toán 11 NC
Bài tập 38 trang 46 SGK Toán 11 NC
Bài tập 39 trang 46 SGK Toán 11
Bài tập 40 trang 46 SGK Toán 11 NC
Bài tập 41 trang 47 SGK Toán 11 NC
Bài tập 42 trang 47 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK