Toán 9 Bài 3: Giải hệ phương trình bằng phương pháp thế

Lý thuyết Bài tập

Tóm tắt bài

1.1. Quy tắc thế

Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế gồm hai bước sau:

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới để thay thế cho một trong hai phương trình của hệ, ta được một hệ phương trình mới tương đương với hệ ban đầu.

1.2. Dùng quy tắc thế để giải hệ phương trình

Bước 1: Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới tương đương, trong đó có một phương trình một ẩn.

Bước 2: Giải phương trình một ẩn đó, từ đó tìm ẩn còn lại, rồi suy ra nghiệm của hệ đã cho.



 


 

 

2.1. Bài tập cơ bản

Bài 1: Giải hệ phương trình sau bằng phương pháp thế  \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} x-2y=1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ x+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 2y+1+y=1 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y+1\\ 3y=0 \end{matrix}\right.\)  \(<=>\left\{\begin{matrix} x=1\\ y=0 \end{matrix}\right.\)

Bài 2: Giải hệ phương trình sau bằng phương phép thế \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} -x+2y=1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2x-4y=-2 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ 2(2y-1)-4y=-2 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=2y-1\\ 0y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=2y-1\\ y \in \mathbb{R} \end{matrix}\right.\)

Bài 3: Chứng minh hệ phương trình sau vô nghiệm \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.\)

Hướng dẫn: Ta có \(\left\{\begin{matrix} x-3y=2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3x+9y=0 \end{matrix}\right.<=>\left\{\begin{matrix} x=3y+2\\ -3(3y+2)+9y=0 \end{matrix}\right.\) \(<=>\left\{\begin{matrix} x=3y+2\\ 0x=6 \end{matrix}\right.\).

Do phương trình \(0x=6\) vô nghiệm nên hệ đã cho vô nghiệm

2.2. Bài tập nâng cao

Bài 1: Cho hệ phương trình với tham số a: \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.\). Giải và biện luận hệ này.

Hướng dẫn: Ta có \(\left\{\begin{matrix} (a+1)x-y=a+1\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)y=2 \end{matrix}\right.<=>\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x+(a-1)[(a+1)x-(a+1)]=2 \end{matrix}\right.\) \(<=> \left\{\begin{matrix} y=(a+1)x-(a+1)\\ a^2x=a^2+1 \end{matrix}\right.\)

Nếu \(a \neq 0\) thì hệ tương đương \(\left\{\begin{matrix} y=(a+1)x-(a+1)\\ x=\frac{a^2+1}{a^2} \end{matrix}\right. <=>\left\{\begin{matrix} y=\frac{a+1}{a^2}\\ x=\frac{a^2+1}{a^2} \end{matrix}\right.\)

Nếu \(a=0\) thì hệ tương đương \(\left\{\begin{matrix} y=x-1\\ 0x=1 \end{matrix}\right.\). Do phương trình \(0x=1\) vô nghiêm nên hệ vô nghiệm.

Bài 2: Biết rằng đa thức \(P(x)\) chia hết cho \(x-a\) khi và chỉ khi \(P(a)=0\) (định lý Bezout). Tìm các giá trị a, b sao cho đa thức sau đồng thời chia hết cho \(x-1\) và \(x-2\):

\(P(x)=ax^4+(a-1)x^3+bx^2+3x+1\)

Hướng dẫn: Từ giả thiết ta có \(\left\{\begin{matrix} P(1)=0\\ P(2)=0 \end{matrix}\right.<=>\left\{\begin{matrix} 2a+b=3\\ 24a+4b=1 \end{matrix}\right.\). Giải hệ này bằng phương pháp thế ta được \(\left\{\begin{matrix} a=\frac{13}{16}\\ b=\frac{-37}{8} \end{matrix}\right.\)

 

3. Luyện tập Bài 3 Chương 3 Đại số 9

Qua bài giảng Giải hệ phương trình bằng phương pháp thế này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm vững quy tắc thế để giải hệ phươngq trình bậc nhất hai ẩn

3.1 Trắc nghiệm Giải hệ phương trình bằng phương pháp thế

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK Giải hệ phương trình bằng phương pháp thế

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 2

Bài tập 12 trang 15 SGK Toán 9 Tập 2

Bài tập 13 trang 15 SGK Toán 9 Tập 2

Bài tập 14 trang 15 SGK Toán 9 Tập 2

Bài tập 15 trang 15 SGK Toán 9 Tập 2

Bài tập 16 trang 16 SGK Toán 9 Tập 2

Bài tập 17 trang 16 SGK Toán 9 Tập 2

Bài tập 18 trang 16 SGK Toán 9 Tập 2

Bài tập 19 trang 16 SGK Toán 9 Tập 2

4. Hỏi đáp Bài 3 Chương 3 Đại số 9

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK