Bài 11. Chứng minh rằng phép vị tự biến mỗi đường thẳng thành một đường thẳng song song hoặc trùng với nó, biến mỗi mặt phẳng thành một mặt phẳng song song hoặc trùng với mặt phẳng đó.
a) Giả sử \({V_k}\) là phép vị tự tỉ số \(k\) biến đường thẳng \(a\) thành đường thẳng \(a’\), lấy \(M,N \in a\) và \({V_k}\left( M \right) = M';{V_k}\left( N \right) = N';M',N' \in a'\).
Ta có : \(\overrightarrow {M'N'} = k\overrightarrow {MN} \Rightarrow \overrightarrow {MN} \) cùng phương với \(\overrightarrow {M'N'} \) do đó hai đường thẳng \(a\) và \(a’\) song song hoặc trùng nhau.
b) Giả sử phép vị tự \({V_k}\) biến mặt phẳng \(\left( \alpha \right)\) thành mp \(\left( {\alpha '} \right)\). Lấy trên \(\left( \alpha \right)\) hai đường thẳng cắt nhau \(a\) và \(b\) thì ảnh của chúng qua \({V_k}\) là hai đường thẳng \(a’\) và \(b’\) nằm trên \(\left( {\alpha '} \right)\) và lần lượt song song hoặc trùng với \(a\) và \(b\). Từ đó suy ra hai mặt phẳng \(\left( \alpha \right)\) và \(\left( {\alpha '} \right)\) song song hoặc trùng nhau.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK