Bài 24
Giải các phương trình sau trên C và biểu diễn hình hợp tập hợp các nghiệm của mỗi phương trình (trong mặt phẳng phức):
a)\({z^3} + 1 = 0\);
b) \({z^4} - 1 = 0\);
c) \({z^4} + 4 = 0\);
d) \(8{z^4} + 8{z^3} = z + 1\).
a) \({z^3} + 1 = 0 \Leftrightarrow \left( {z + 1} \right)\left( {{z^2} - z + 1} \right) = 0\)
Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
\({z^2} - z + 1 = 0 \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = - {3 \over 4} = {\left( {{{\sqrt 3 } \over 2}i} \right)^2}\)
\( \Leftrightarrow \left[ \matrix{ z = {1 \over 2} + {{\sqrt 3 } \over 2}i = {z_2} \hfill \cr z = {1 \over 2} - {{\sqrt 3 } \over 2}i = {z_3} \hfill \cr} \right.\)
Vậy \(S = \left\{ { - 1;{1 \over 2} + {{\sqrt 3 } \over 2}i;{1 \over 2} - {{\sqrt 3 } \over 2}i} \right\}\)
b) \({z^4} - 1 = 0 \Leftrightarrow \left( {{z^2} - 1} \right)\left( {{z^2} + 1} \right) = 0\)
\( \Leftrightarrow \left[ \matrix{ {z^2} - 1 = 0 \hfill \cr {z^2} + 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ z = \pm 1 \hfill \cr z = \pm i \hfill \cr} \right.\)
Phương trình có 4 nghiệm \({z_1} = i,{z_2} = - i,{z_3} = 1,{z_4} = - 1\)
c) \({z^4} + 4 = 0 \Leftrightarrow \left( {{z^2} + 2i} \right)\left( {{z^2} - 2i} \right) = 0\)
Nghiệm của \({z^2} + 2i = 0\) là các căn bậc hai của -2i, đó là \({z_1} = 1 - i\),\({z_2} = - 1 + i\)
Nghiệm của \({z^2} - 2i = 0\) là các căn bậc hai của 2i, đó là \({z_3} = 1 + i\),\({z_4} = - 1 - i\)
Vậy \({z^4} + 4 = 0\) có bốn nghiệm \({z_1},{z_2},{z_3},{z_4}\).
d) \(8{z^4} + 8{z^3} = z + 1 \Leftrightarrow \left( {z + 1} \right)\left( {8{z^3} - 1} \right) = 0\)
\( \Leftrightarrow \left( {z + 1} \right)\left( {2z - 1} \right)\left( {4{z^2} + 2z + 1} \right) = 0\)
Nghiệm của \(z + 1 = 0\) là \({z_1} = - 1\)
Nghiệm của \(2z - 1 = 0\) là \({z_2} = {1 \over 2}\)
Nghiệm của \(4{z^2} + 2z + 1 = 0\) hay \({\left( {2z + {1 \over 2}} \right)^2} + {3 \over 4} = 0\)là \({z_3} = - {1 \over 4} + {{\sqrt 3 } \over 4}i\) và\({z_4} = - {1 \over 4} - {{\sqrt 3 } \over 4}i\)
Vậy phương trình đã cho có bốn nghiệm\({z_1},{z_2},{z_3},{z_4}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK