Bài 58
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {{2x - 1} \over {x + 1}}\)
b) Với các giá nào của \(m\), đường thẳng \(\left( {{d_m}} \right)\) đi qua điểm \(A(-2;2)\) và có hệ số góc \(m\) cắt đồ thị của hàm số đã cho:
• Tại hai điểm phân biệt?
• Tại hai điểm thuộc hai nhánh của đồ thị?
a) Tập xác đinh: \(D = R\backslash \left\{ { - 1} \right\}\)
\(y' = {3 \over {{{(x + 1)}^2}}}>0\,\,\forall x\in D\)
Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)
Hàm số không có cực trị
Giới hạn
\(\mathop {\lim }\limits_{x \to \pm \infty } y = 2\)
Tiệm cận đứng \(y=2\)
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \cr
& \mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \cr} \)
Tiệm cận đứng: \(x=-1\)
Bảng biến thiên:
Đồ thị giao \(Ox\) tại điểm \(\left( {{1 \over 2};0} \right)\)
Đồ thị giao \(Oy\) tại điểm \((0;-1)\)
b) Phương trình đường thẳng \(\left( {{d_m}} \right)\) qua điểm \(A(-2;2)\) có hệ số góc \(m\) là:
\(y - 2 = m\left( {x + 2} \right)\,\,\,\,hay\,\,\,\,y = mx + 2m + 2\)
Hoành độ giao điểm của đường thẳng \(\left( {{d_m}} \right)\) và đường cong đã cho là nghiệm phương trình:
\(\eqalign{
& \,\,\,\,\,mx + 2m + 2 = {{2x - 1} \over {x + 1}} \cr
& \Leftrightarrow \left( {mx + 2m + 2} \right)\left( {x + 1} \right) = 2x - 1\,\,\,\,\,\left( 1 \right) \cr
& \Leftrightarrow f\left( x \right) = m{x^2} + 3mx + 2m + 3 = 0\,\,\,\left( 2 \right) \cr} \)
(vì \(x = -1\) không là nghiệm của (1))
• Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm phân biệt khi và chỉ khi phương trình \((2)\) có hai nghiệm phân biệt, tức là
\(\left\{ \matrix{
m \ne 0 \hfill \cr
\Delta = {m^2} - 12m > 0 \hfill \cr} \right. \Leftrightarrow m < 0\,\,\text{ hoặc }\,m > 12\,\,\,\left( * \right)\)
• Hai nhánh của đường cong nằm về hai phía của đường tiệm cận đứng \(x = -1\) của đồ thị.
Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm thuộc hai nhánh của nó khi và chỉ khi (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} < - 1 < {x_2}\)
\(\eqalign{
& \Leftrightarrow {x_1} + 1 < 0 < {x_2} + 1\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) < 0 \cr
& \Leftrightarrow {x_1}.{x_2} + {x_1} + {x_2} + 1 < 0 \Leftrightarrow {{2m + 3} \over m} - {{3m} \over m} + 1 < 0 \cr
& \Leftrightarrow {3 \over m} < 0\,\text{(thỏa mãn diều kiện (*))} \cr} \)
Vậy với \(m < 0\) thì \(\left( {{d_m}} \right)\) cắt (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK