Cho hình lập phương \((H)\). Gọi \((H’)\) là hình bát diện đều có các đỉnh là tâm các mặt của \((H)\). Tính tỉ số diện tích toàn phần của \((H)\) và \((H’)\).
+) Bát diện đều là khối đa diện gồm 8 mặt là 8 tam giác đều.
+) Diện tích toàn phần của hình bát diện đều = 8. diện tích 1 mặt.
Lời giải chi tiết
Giả sử khối lập phương có cạnh bằng \(a\). Khi đó diện tích toàn phần của nó là: \(S_1 = 6. a^2\)
Gọi \(M\) là tâm của hình vuông \(AMCD\); \(Q\) là tâm hình vuông \(ADD'A'\); \(P\) là tâm hình vuông \(ABB'A'\); \(N\) là tâm hình vuông \(BCC'B'\); \(E\) là tâm hình vuông \(DCC'D'\) và \(F\) là tâm hình vuông \(A'B'C'D'\).
Xét bát diện đều thu được, khi đó diện tích toàn phần của nó là \(8\) lần diện tích tam giác đều \(MQE\) (hình vẽ)
Xét tam giác \(ACD’\), ta có \(M, Q\) lần lượt là trung điểm của \(AC\) và \(AD’\) nên \(MQ\) là đường trung bình của tam giác \(ACD’\), do đó \(MQ = {1 \over 2}C{\rm{D}}' = {1 \over 2}\sqrt 2a \)
Ta có \({S_{AMQE}} = {1 \over 2}{\left( {{1 \over 2}\sqrt 2a } \right)^2}.{{\sqrt 3 } \over 2} = {1 \over 8}{a^2}\sqrt 3 \)
Diện tích xung quanh của bát diện đều là: \({S_2} = 8.{1 \over 8}.{a^2}\sqrt 3 = {a^2}\sqrt 3 \)
Do đó: \({{{S_1}} \over {{S_2}}} = {{6{{\rm{a}}^2}} \over {a\sqrt 3 }} = 2\sqrt 3 \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK