Bài 2 trang 140 SGK Giải tích 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải các phương trình sau trên tập hợp số phức:

a) \( - 3{z^2} +2z - 1 = 0\);           b) \(7{z^2} + {\rm{ }}3z + 2 = 0\);     

c) \(5{z^2} -7z+ 11=  0\) 

Hướng dẫn giải

Phương trình bậc hai: \(a{z^2} + bz + c = 0\) \(\left( {a \ne 0} \right)\)

Bước 1: Tính biệt thức \(\Delta  = {b^2} - 4ac\) (hoặc \(\Delta ' = b{'^2} - ac\)).

Bước 2: 

Khi \(\Delta  = 0\), phương trình có nghiệm kép \(x =  - \frac{b}{{2a}}\).

Khi \(\Delta  > 0\), phương trình có hai nghiệm thực phân biệt \({x_{1,2}} = \frac{{ - b + \sqrt \Delta  }}{{2a}}\).

Khi \(\Delta  < 0\), gọi \(\delta \) là một căn bậc hai của \(\Delta\), phương trình có hai nghiệm phức \({x_{1,2}} = \frac{{ - b \pm \delta }}{{2a}}\)

Lời giải chi tiết

a) Ta có \(∆' = 1^2-(-3).(-1)=1 - 3 = -2\).

Căn bậc hai của \(\Delta'\) là \( \pm i\sqrt 2 \)

Vậy nghiệm của phương trình là \(z_{1,2}\)= \( \frac{1\pm i\sqrt{2}}{3}\)

b) Ta có \(∆ =3^2-4.7.2= 9 - 56 = -47\).

Căn bậc hai của \(\Delta\) là \( \pm i\sqrt {47}\)

Vậy nghiệm của phương trình là \(z_{1,2}\) = \( \frac{-3\pm i\sqrt{47}}{14}\);

c) Ta có \(∆ = 49 - 4.5.11 = -171\).

Căn bậc hai của \(\Delta\) là \( \pm i\sqrt {171}\)

Vậy nghiệm của phương trình là \(z_{1,2}\) = \( \frac{7\pm i\sqrt{171}}{10}\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK