Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải các phương trình lôgarit:

a)  \({1 \over 2}\log \left( {{x^2} + x - 5} \right) = \log 5{\rm{x}} + \log {1 \over {5{\rm{x}}}}\)

b)  \({1 \over 2}\log \left( {{x^2} - 4{\rm{x}} - 1} \right) = \log 8{\rm{x}} - \log 4{\rm{x}}\)

c)  \({\log _{\sqrt 2 }}x + 4{\log _{4{\rm{x}}}}x + {\log _8}x = 13\)

Hướng dẫn giải

Các bước giải phương trình logarit:

+) Tìm điều kiện xác định.

+) Sử dụng các phương pháp tương ứng để giải phương trình (có các phương pháp: đưa về cùng cơ số, đặt ẩn phụ, mũ hóa….).

+) Giải phương trình để tìm ẩn và so sánh với điều kiện xác định rồi kết luận nghiệm của phương trình.

Bài toán này chủ yếu sử dụng phương pháp đưa về cùng cơ số:   \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\g\left( x \right) > 0\\f\left( x \right) = g\left( x \right)\end{array} \right..\)

Lời giải chi tiết

a)  \(\frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log 5x + \log \frac{1}{{5x}}.\)

Điều kiện:  \(\left\{ \begin{array}{l}{x^2} + x - 5 > 0\\5x > 0\\\frac{1}{{5x}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > \frac{{ - 1 + \sqrt {21} }}{2}\\x < \frac{{ - 1 - \sqrt {21} }}{2}\end{array} \right.\\x > 0\end{array} \right. \Leftrightarrow x > \frac{{ - 1 + \sqrt {21} }}{2} \approx 1,79.\)

 \(\begin{array}{l}Pt \Leftrightarrow \frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log \left( {5x.\frac{1}{{5x}}} \right)\\ \Leftrightarrow \frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log 1\\\Leftrightarrow \log \left( {{x^2} + x - 5} \right) = 0\\\Leftrightarrow {x^2} + x - 5 = {10^0}=1\\ \Leftrightarrow {x^2} + x - 6 = 0\\\Leftrightarrow \left( {x + 3} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 3\;\;\left( {ktm} \right)\\x = 2\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy phương trình có nghiệm \(x=2\).

b)  \(\frac{1}{2}\log \left( {{x^2} - 4x - 1} \right) = \log 8x - \log 4x.\)

Điều kiện:  \(\left\{ \begin{array}{l}{x^2} - 4x - 1 > 0\\8x > 0\\4x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 2 + \sqrt 5 \\x < 2 - \sqrt 5 \end{array} \right.\\x > 0\end{array} \right. \Leftrightarrow x > 2 + \sqrt 5 .\)

 \(\begin{array}{l}Pt \Leftrightarrow \frac{1}{2}\log \left( {{x^2} - 4x - 1} \right) = \log \frac{{8x}}{{4x}}\\ \Leftrightarrow \log \sqrt {{x^2} - 4x - 1}  = \log 2\\ \Leftrightarrow \sqrt {{x^2} - 4x - 1}  = 2\\ \Leftrightarrow {x^2} - 4x - 1 = 4\\ \Leftrightarrow {x^2} - 4x - 5 = 0\\\Leftrightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0\\\Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 1\;\;\left( {ktm} \right)\\x = 5\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy phương trình có nghiệm \(x=5.\)

c)  \({\log _{\sqrt 2 }}x + 4{\log _4}x + {\log _8}x = 13.\)

Điều kiện:  \(x > 0.\)

 \(\begin{array}{l}Pt \Leftrightarrow {\log _{{2^{\frac{1}{2}}}}}x + 4{\log _{{2^2}}}x + {\log _{{2^3}}}x = 13\\\Leftrightarrow 2{\log _2}x + 4.\frac{1}{2}{\log _x}x + \frac{1}{3}{\log _2}x = 13\\\Leftrightarrow \frac{{13}}{3}{\log _2}x = 13\\\Leftrightarrow {\log _2}x = 3\\\Leftrightarrow x = {2^3} = 8\;\;\left( {tm} \right).\end{array}\)

Vậy phương trình có nghiệm \(x=8.\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK