Viết các số sau theo thứ tự tăng dần:
a) \(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)
b) \(98^{0}\) ; \(\left ( \frac{3}{7} \right )^{-1}\) ; \(32^{\frac{1}{5}}\).
+) Sử dụng công thức đổi cơ số: \({\left( {\frac{1}{a}} \right)^m} = {a^{ - m}}\).
+) Sử dụng công thức: \({\left( {{a^m}} \right)^n} = {a^{m.n}}.\)
+) Quy ước: \({1^m} = 1.\)
Lời giải chi tiết
a) Sử dụng tính chất: Trong các lũy thừa cùng cơ số lớn hơn \(1\), lũy thừa nào có số mũ lớn hơn thì lũy thừa đó lớn hơn.
b) Sử dụng các công thức lũy thừa, rút gọn các lũy thừa, đưa các lũy thừa đó về dạng một số thực sau đó so sánh các số đó với nhau.
a) \(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)
Ta có: \({1^{3,75}} = 1 = {2^0};\;\;{\left( {\frac{1}{2}} \right)^{ - 3}} = {2^3}.\)
Có: \( - 1 < 0 < 3 \Rightarrow {2^{ - 1}} < {2^0} < {2^3} \Rightarrow {2^{ - 1}} < {1^{3,75}} < {\left( {\frac{1}{2}} \right)^{ - 3}}.\)
Vậy ta sắp xếp được: \({2^{ - 1}};\;1,375;\;\;{\left( {\frac{1}{2}} \right)^{ - 3}}.\)
b) \({98^0};\;\;{\left( {\frac{3}{7}} \right)^{ - 1}};\;\;{32^{\frac{1}{5}}}.\)
Ta có: \({98^0} = 1;\;\;{\left( {\frac{3}{7}} \right)^{ - 1}} = \frac{7}{3} \approx 2,\left( {33} \right);\;\;{32^{\frac{1}{5}}} = {\left( {{2^5}} \right)^{\frac{1}{5}}} = 2.\)
Có: \(1 < 2 < \frac{7}{3} \Rightarrow {98^0} < {32^{\frac{1}{5}}} < {\left( {\frac{3}{7}} \right)^{ - 1}}.\)
Vậy ta sắp xếp được: \({98^0};\;\;{32^{\frac{1}{5}}};\;{\left( {\frac{3}{7}} \right)^{ - 1}}.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK