Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC.
Chứng minh rằng :
a. AH, SK, BC đồng quy ;
b. SC ⊥ mp(BHK)
c. HK ⊥ mp(SBC).
a. Gọi I là giao điểm của hai đường thẳng AH và BC
Ta có : BC ⊥ AH (do H là trực tâm ΔABC)
BC ⊥ SA (do SA ⊥ mp(ABC))
Suy ra BC ⊥ (SAI) mà SI ⊂ (SAI) nên BC ⊥ SI
K là trực tâm ΔSBC nên SI qua K
Vậy AH, SK, BC đồng quy tại I.
b. Ta có : BH ⊥ AC và BH ⊥ SA nên BH ⊥ mp(SAC)
Suy ra BH ⊥ SC
Mặt khác SC ⊥ BK nên SC ⊥ mp(BHK)
c. Ta có: SC ⊥ HK (do HK ⊥ mp(BHK)) mà HK ⊥ BC (do BC ⊥ mp(ASI))
Vậy HK ⊥ mp(SBC)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK