Câu 2 trang 91 SGK Hình học 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình chóp S.ABCD.

a. Chứng minh rằng nếu ABCD là hình bình hành thì \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \). Điều ngược lại có đúng không ?

b. Gọi O là giao điểm của AC và BD. Chứng tỏ rằng ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \)

Hướng dẫn giải

a. Ta có:

\(\eqalign{  & \overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC}   \cr  &  \Leftrightarrow \overrightarrow {SB}  - \overrightarrow {SC}  = \overrightarrow {SA}  - \overrightarrow {SD}  \Leftrightarrow \overrightarrow {CB}  = \overrightarrow {DA}  \cr} \)

⇔ ABCD là hình bình hành.

b. Ta có:

\(\eqalign{  & \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OB}  + \overrightarrow {SO}  + \overrightarrow {OC}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \,\,\left( * \right) \cr} \)

Nếu ABCD là hình bình hành thì \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) suy ra

 \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) (do (*))

Ngược lại, giả sử \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} ,\) ta có (*).

Gọi M, N lần lượt là trung điểm của AC, BD thì :

\(\overrightarrow {OA}  + \overrightarrow {OC}  = 2\overrightarrow {OM} ,\overrightarrow {OB}  + \overrightarrow {OD}  = 2\overrightarrow {ON} \)

Từ (*) suy ra \(2\left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right) = \overrightarrow 0 ,\) điều này chứng tỏ O, M, N thẳng hàng

Mặt khác, M thuộc AC, N thuộc BD và O là giao điểm của AC và BD nên O, M, N thẳng hàng chỉ xảy ra khi O ≡ M ≡ N, tức O là trung điểm AC và BD, hay ABCD là hình bình hành.

 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK