Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:
a. MN // DE
b. M1N1 // mp(DEF)
c. mp(MNN1M1) // mp(DEF)
a. Gọi O là tâm hình bình hành ABCD, ta có AO là trung tuyến và \({{AM} \over {AO}} = {{2AM} \over {AC}} = {2 \over 3}\)
⇒ M là trọng tâm của tam giác ABD , tương tự N là trọng tâm tam giác ABE
Gọi I là trung điểm của AB thì M, N lần lượt trên DI và EI
Trong tam giác IDE ta có: \({{IM} \over {ID}} = {{IN} \over {IE}} = {1 \over 3}\) nên MN // DE và \(MN = {1 \over 3}DE\)
b. Trong ∆FAB: NN1 // AB ⇒ \({{A{N_1}} \over {AF}} = {{BN} \over {BF}} = {1 \over 3}\)
Trong ∆DAB: MM1 // AB ⇒ \({{A{M_1}} \over {AD}} = {{DM} \over {DI}} = {1 \over 3}\)
Do đó \({{A{N_1}} \over {AF}} = {{A{M_1}} \over {AD}}\) nên M1N1 // DF
Mà DF ⊂ (DEF) suy ra M1N1 // mp(DEF)
c. Ta có : M1N1 // DF , NN1 // EF
mà M1N1 và NN1 cắt nhau và nằm trong mp(MNN1M1), còn DF và EF cắt nhau và nằm trong mp(DEF)
Vậy mp(MNN1M1) // mp(DEF)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK