Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trên (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A’, B’, C’, D’. Chứng minh rằng A’B’C’D’ là hình bình hành
Ta có: \(\left\{ {\matrix{ {a//b} \cr {AD//BC } \cr {a \cap AD=A } \cr } } \right.\Rightarrow \left( {a,d} \right)//\left( {b,c} \right) \)
Tương tự (a, b) // (c, d).
Vì hai mặt phẳng (a, b) và (c, d) song song nhau nên mp(A’B’C’) cắt hai mặt phẳng này
lần lượt theo hai giao tuyến A’B’ và C’D’ song song nhau.
Tương tự A’D’// B’C’.
Vậy A’B’C’D’ là hình bình hành.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK