Gọi G là trọng tâm của tứ diện ABCD
a. Chứng minh rằng đường thẳng đi qua G và một đỉnh của tứ diện sẽ đi qua trọng tâm của mặt đối diện với đỉnh ấy
b. Gọi A’ là trọng tâm của mặt BCD. Chứng minh rằng GA = 3GA’
a. Trong mp(ABN) gọi A’ là giao điểm của AG với trung tuyến BN của ΔBCD. Ta chứng minh :
A’B = 2A’N
Áp dụng định lí Menelaus trong ΔBMN với cát tuyến AGA’ ta có :
\({{AM} \over {AB}}.{{GN} \over {GM}}.{{A'B} \over {A'N}} = 1 \Rightarrow {1 \over 2}.1.{{A'B} \over {A'N}} = 1 \Rightarrow A'B = 2A'N\)
Vậy A’ là trọng tâm của ΔBCD
Tương tự BG ,CG, DG lần lượt đi qua trọng tâm B’, C’, D’ của tam giác ACD, ABD, ABC.
b. Chứng minh GA = 3GA’
Áp dụng định lí Menelaus trong ΔABA’ với cát tuyến MGN ta có :
\({{MA} \over {MB}}.{{GA'} \over {GA}}.{{NB} \over {NA'}} = 1 \Rightarrow 1.{{GA'} \over {GA}}.3 = 1 \)
\(\Rightarrow GA = 3GA'\,\,\left( {dpcm} \right)\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK